Question

In: Statistics and Probability

Students enter the bathroom according to a Poisson process at a rate of 7.5 arrivals per...

Students enter the bathroom according to a Poisson process at a rate of 7.5 arrivals per minute.

  1. What is the probability that exactly 46 students enter between 3:00 and 3:05?

  2. Given that 6 students enter the bathroom between 4:00 and 4:01, what is the probability that exactly 36 students enter between 4:00 and 4:07?

  3. Each student entering the bathroom has a .15 probability of wearing a hoodie, independent of other students. What is the probability that exactly 10 students wearing a hoodie enter the bathroom between 4: and 4:07?

Solutions

Expert Solution


Related Solutions

Assume that the Poisson process X = {X(t) : t ≥ 0} describes students’ arrivals at...
Assume that the Poisson process X = {X(t) : t ≥ 0} describes students’ arrivals at the library with intensity λ = 4 per hour. Given that the tenth student arrived exactly at the end of fourth hour, or W10 = 4, find: 1. E [W1|W10 = 4] 2. E [W9 − W1|W10 = 4]. Hint: Suppose that X {X(t) : t ≥ 0} is a Poisson process with rate λ > 0 and its arrival times are defined for...
People arrive at a party according to a Poisson process of rate 30 per hour and...
People arrive at a party according to a Poisson process of rate 30 per hour and remain for an independent exponential time of mean 2 hours. Let X(t) be the number of people at the party at time t (in hours) after it started. Compute E[X(t)] and determine how long it takes to have on average more than 40 people at the party.
On a highway, vehicles pass according to a Poisson process with rate 1 vehicle per minute....
On a highway, vehicles pass according to a Poisson process with rate 1 vehicle per minute. Suppose that 25% of the vehicles are trucks and 75% of the vehicles are cars. Let NC(t) and NT(t) denote the number of cars and trucks that pass in t minutes, respectively. Then N(t) = NC(t) + NT(t) is the number of vehicles that pass in t minutes. Find E[N(10) | NT(10)=2] Find P[NC(10)=14 | N(10)=15]
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ=8t.
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α = 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter μ=8t. (Round your answers to three decimal places.)  (a) What is the probability that exactly 7 small aircraft arrive during a 1-hour period? What is the probability that at least 7 small aircraft arrive during a 1-hour period? What is the probability that at...
Find each Poisson probability, using a mean arrival rate of 10 arrivals per hour.    (a)...
Find each Poisson probability, using a mean arrival rate of 10 arrivals per hour.    (a) Seven arrivals. (Round your answer to 4 decimal places.)      Poisson probability        (b) Three arrivals. (Round your answer to 4 decimal places.)      Poisson probability        (c) Fewer than five arrivals. (Round your answer to 4 decimal places.)      Poisson probability       (d) At least 11 arrivals. (Round your answer to 4 decimal places.)      Poisson probability   
Certain electrical disturbances occur according to a Poisson process with rate 3 per hour. These disturbances...
Certain electrical disturbances occur according to a Poisson process with rate 3 per hour. These disturbances cause damage to a computer. a) Assume that a single disturbance will cause the computer to crash. What is the probability that the system will crash in the coming 10 minutes? b) Assume that the computer will survive a single disturbance, but the second such disturbance will cause it to crash. What is, now, the probability that the computer will crash in the coming...
Customers arrive at an establishment according to a Poisson process of frequency  = 5 per...
Customers arrive at an establishment according to a Poisson process of frequency  = 5 per hour. Since the establishment opens at 9:00 am: a) What is the probability that exactly a client arrived by 9:45 am? b) What is the probability of maximum five clients by 11:45 am?
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α= 8 per hour
Suppose small aircraft arrive at a certain airport according to a Poisson process with rate α= 8 per hour, so that the number of arrivals during a time period of t hours is a Poisson rv with parameter λ = 8t. (a) What is the probability that exactly 6 small aircraft arrive during a 1-hour period? At least 6? At least 10? (b) What are the expected value and standard deviation of the number of small aircraft that arrive during...
Emails arrive in an inbox according to a Poisson process with rate λ (so the number...
Emails arrive in an inbox according to a Poisson process with rate λ (so the number of emails in a time interval of length t is distributed as Pois(λt), and the numbers of emails arriving in disjoint time intervals are independent). Let X, Y, Z be the numbers of emails that arrive from 9 am to noon, noon to 6 pm, and 6 pm to midnight (respectively) on a certain day. (a) Find the joint PMF of X, Y, Z....
A radioactive mass emits particles according to a Poisson process at a mean rate of 2.5...
A radioactive mass emits particles according to a Poisson process at a mean rate of 2.5 per second. Let T be the waiting time, in seconds, between emissions. 1-What is the median waiting time? 2-Find P(0.3 < T < 1.5). 3-If 3 seconds have elapsed with no emission, what is the probability that there will be an emission within the next second
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT