In: Economics
13-24
A 2,000-pound, counterbalanced, propane forklift can be purchased for $30,000. Due to the intended service use, the forklift’s market value drops 20% of its prior year’s value in Years 1 and 2 and then declines 15% until Year 10 when it will have a scrap/market value of $1,000. Maintenance of the forklift is $400 per year during Years 1 and 2 while the warranty is in place. In Year 3 it jumps to $750 and increases by $200 per year thereafter. What is the optimal life of the forklift using i = 10%?
We need to calculate economic life of the forlift
I = 10%
Initial cost = 30000
Salvage value = 20% drop in first year from initial cost, 20% in next year. 15% drop per year afterwards
Maintenance cost = 400 in year 1 and 2, 750 in yr 3 and increase by 200 per year after wards
using excel
Year | Discount factor | O&M cost | PV (O&M) | Cumulative (O&M) | Cumulative (O&M) + Initial Cost | Salvage value | PV (Salvage value) | NPV | (A/P,10%,n) | EUAC |
A | B | C | D=C*B | E | F=E+30000 | G | H=G*B | I=F-H | J | K = I*J |
1 | 0.90909 | 400.00 | 363.64 | 363.64 | 30363.64 | 24000.00 | 21818.18 | 8545.45 | 1.10000 | 9400.00 |
2 | 0.82645 | 400.00 | 330.58 | 694.21 | 30694.21 | 19200.00 | 15867.77 | 14826.45 | 0.57619 | 8542.86 |
3 | 0.75131 | 750.00 | 563.49 | 1257.70 | 31257.70 | 16320.00 | 12261.46 | 18996.24 | 0.40211 | 7638.67 |
4 | 0.68301 | 950.00 | 648.86 | 1906.56 | 31906.56 | 13872.00 | 9474.76 | 22431.80 | 0.31547 | 7076.58 |
5 | 0.62092 | 1150.00 | 714.06 | 2620.62 | 32620.62 | 11791.20 | 7321.41 | 25299.22 | 0.26380 | 6673.87 |
6 | 0.56447 | 1350.00 | 762.04 | 3382.66 | 33382.66 | 10022.52 | 5657.45 | 27725.21 | 0.22961 | 6365.91 |
7 | 0.51316 | 1550.00 | 795.40 | 4178.06 | 34178.06 | 8519.14 | 4371.67 | 29806.39 | 0.20541 | 6122.40 |
8 | 0.46651 | 1750.00 | 816.39 | 4994.45 | 34994.45 | 7241.27 | 3378.11 | 31616.34 | 0.18744 | 5926.29 |
9 | 0.42410 | 1950.00 | 826.99 | 5821.44 | 35821.44 | 6155.08 | 2610.35 | 33211.08 | 0.17364 | 5766.79 |
10 | 0.38554 | 2150.00 | 828.92 | 6650.35 | 36650.35 | 1000.00 | 385.54 | 36264.81 | 0.16275 | 5901.93 |
Discount factor | 1/(1+0.10)^n | |||||||||
(A/P,i,n) | i((1 + i)^n)/((1 + i)^n-1) |
As EUAC is lowest in yr 9, so optimum life is 9 years
Showing formula in excel
Year | Discount factor | O&M cost | PV (O&M) | Cumulative (O&M) | Cumulative (O&M) + Initial Cost | Salvage value | PV (Salvage value) | NPV | (A/P,10%,n) | EUAC |
A | B | C | D=C*B | E | F=E+30000 | G | H=G*B | I=F-H | J | K = I*J |
1 | =1/(1.1)^A66 | 400 | =C66*B66 | =D66 | =30000+E66 | =30000*0.8 | =G66*B66 | =F66-H66 | =0.1*((1 + 0.1)^A66)/((1 + 0.1)^A66-1) | =I66*J66 |
2 | =1/(1.1)^A67 | 400 | =C67*B67 | =E66+D67 | =30000+E67 | =G66*0.8 | =G67*B67 | =F67-H67 | =0.1*((1 + 0.1)^A67)/((1 + 0.1)^A67-1) | =I67*J67 |
3 | =1/(1.1)^A68 | 750 | =C68*B68 | =E67+D68 | =30000+E68 | =G67*0.85 | =G68*B68 | =F68-H68 | =0.1*((1 + 0.1)^A68)/((1 + 0.1)^A68-1) | =I68*J68 |
4 | =1/(1.1)^A69 | =C68+200 | =C69*B69 | =E68+D69 | =30000+E69 | =G68*0.85 | =G69*B69 | =F69-H69 | =0.1*((1 + 0.1)^A69)/((1 + 0.1)^A69-1) | =I69*J69 |
5 | =1/(1.1)^A70 | =C69+200 | =C70*B70 | =E69+D70 | =30000+E70 | =G69*0.85 | =G70*B70 | =F70-H70 | =0.1*((1 + 0.1)^A70)/((1 + 0.1)^A70-1) | =I70*J70 |
6 | =1/(1.1)^A71 | =C70+200 | =C71*B71 | =E70+D71 | =30000+E71 | =G70*0.85 | =G71*B71 | =F71-H71 | =0.1*((1 + 0.1)^A71)/((1 + 0.1)^A71-1) | =I71*J71 |
7 | =1/(1.1)^A72 | =C71+200 | =C72*B72 | =E71+D72 | =30000+E72 | =G71*0.85 | =G72*B72 | =F72-H72 | =0.1*((1 + 0.1)^A72)/((1 + 0.1)^A72-1) | =I72*J72 |
8 | =1/(1.1)^A73 | =C72+200 | =C73*B73 | =E72+D73 | =30000+E73 | =G72*0.85 | =G73*B73 | =F73-H73 | =0.1*((1 + 0.1)^A73)/((1 + 0.1)^A73-1) | =I73*J73 |
9 | =1/(1.1)^A74 | =C73+200 | =C74*B74 | =E73+D74 | =30000+E74 | =G73*0.85 | =G74*B74 | =F74-H74 | =0.1*((1 + 0.1)^A74)/((1 + 0.1)^A74-1) | =I74*J74 |
10 | =1/(1.1)^A75 | =C74+200 | =C75*B75 | =E74+D75 | =30000+E75 | 1000 | =G75*B75 | =F75-H75 | =0.1*((1 + 0.1)^A75)/((1 + 0.1)^A75-1) | =I75*J75 |
Discount factor | 1/(1+0.10)^n | |||||||||
(A/P,i,n) | i((1 + i)^n)/((1 + i)^n-1) |