In: Finance
Consider a $50,000 loan to be repaid in equal installments at the end of each of the next 5 years. The interest rate is 10%.
Year | Payment | Repayment Interest | Repayment of Principal | Balance |
1 | $ | $ | $ | $ |
2 | $ | $ | $ | $ |
3 | $ | $ | $ | $ |
4 | $ | $ | $ | $ |
5 | $ | $ | $ | $ |
Total | $ | $ | $ |
Answer a
Present value of Annuity = A*[(1-(1+r)-n)/r]
Where
A - Annuity payment = ?
r - rate per period = 10%
n - no. of periods = 5
50000 = A* [(1-(1+.10)^-5)/.10]
= A* [(1-0.62092132305)/.10]
= A*3.7907867695
A = 50000/3.7907867695
= 13189.87
Year | Opening Balance | Total Payment | interest paid | principal paid | end balance |
1 | 50000.00 | 13189.87 | 5000.00 | 8189.87 | 41810.13 |
2 | 41810.13 | 13189.87 | 4181.01 | 9008.86 | 32801.27 |
3 | 32801.27 | 13189.87 | 3280.13 | 9909.74 | 22891.53 |
4 | 22891.53 | 13189.87 | 2289.15 | 10900.72 | 11990.81 |
5 | 11990.81 | 13189.87 | 1199.08 | 11990.81 | 0.00 |
Interest paid = Opening Balance*10%/12
Principal paid = Total Payment - Interest paid
End balance = Opening Balance - Principal paid
Answer b
Present value of Annuity = A*[(1-(1+r)-n)/r]
Where
A - Annuity payment = ?
r - rate per period = 10%
n - no. of periods = 5
100000 = A* [(1-(1+.10)^-5)/.10]
= A* [(1-0.62092132305)/.10]
= A*3.7907867695
A = 100000/3.7907867695
= 26379.75
Answer c
Present value of Annuity = A*[(1-(1+r)-n)/r]
Where
A - Annuity payment = ?
r - rate per period = 10%
n - no. of periods = 10
100000 = A* [(1-(1+.10)^-10)/.10]
= A* [(1-0.38554328943)/.10]
= A*6.1445671057
A = 100000/6.1445671057
= 16274.54