Question

In: Advanced Math

For matrices, a mulitplicative identity is a square matrix X such XA = AX = A...

For matrices, a mulitplicative identity is a square matrix X such XA = AX = A for any square matrix A. Prove that X must be the identity matrix.

Prove that for any invertible matrix A, the inverse matrix must be unique. Hint: Assume that there are two inverses and then show that they much in fact be the same matrix.

Prove Theorem which shows that Gauss-Jordan Elimination produces the inverse matrix for any invertible matrix A. Your proof cannot use elementary matrices (like the book’s proof does).

Prove that null(A) is a vector space.

Prove that col(A) is a vector space.

Solutions

Expert Solution


Related Solutions

for the system equation of x' = Ax   if Coefficients Matrix A be ? = [...
for the system equation of x' = Ax   if Coefficients Matrix A be ? = [ 5 −5 −5 −1 4 2 3 −5 −3 ] , find the basic matrix
(a) The n × n matrices A, B, C, and X satisfy the equation AX(B +...
(a) The n × n matrices A, B, C, and X satisfy the equation AX(B + CX) ?1 = C Write an expression for the matrix X in terms of A, B, and C. You may assume invertibility of any matrix when necessary. (b) Suppose D is a 3 × 5 matrix, E is a 5 × c matrix, and F is a 4 × d matrix. Find the values of c and d for which the statement “det(DEF) =...
build a program which performs matrix multiplication on square matrices. use UNIX "time" to capture the...
build a program which performs matrix multiplication on square matrices. use UNIX "time" to capture the time it takes to run the program with different data sizes. Languages: Python Task: Create matrix multiplication Input: Size of square matrix.   Size should be    250, 500, 1000, 1500, 2000 Internals: Explicitly or implicitly allocate sufficient memory to hold three NxN floating point Matrices, using a random number generator -- populate two of the Matrices, Multiply the two matrices, putting the result into the...
Divide and Conquer (Strassen’s Matrix Multiplication) Given two square matrices A and B of size n...
Divide and Conquer (Strassen’s Matrix Multiplication) Given two square matrices A and B of size n x n each, find their multiplication matrix. Naive Method Following is a simple way to multiply two matrices.                void multiply(int A[][N], int B[][N], int C[][N]) {     for (int i = 0;   i < N; i++) {         for (int j = 0; j < N; j++) {             C[i][j] = 0;             for (int k = 0; k < N; k++) {                 C[i][j] += A[i][k]*B[k][j];             }...
4. The product y = Ax of an m n matrix A times a vector x...
4. The product y = Ax of an m n matrix A times a vector x = (x1; x2; : : : ; xn)T can be computed row-wise as y = [A(1,:)*x; A(2,:)*x; ... ;A(m,:)*x]; that is y(1) = A(1,:)*x y(2) = A(2,:)*x ... y(m) = A(m,:)*x Write a function M-file that takes as input a matrix A and a vector x, and as output gives the product y = Ax by row, as denoted above (Hint: use a for...
Let A be an m x n matrix. Prove that Ax = b has at least...
Let A be an m x n matrix. Prove that Ax = b has at least one solution for any b if and only if A has linearly independent rows. Let V be a vector space with dimension 3, and let V = span(u, v, w). Prove that u, v, w are linearly independent (in other words, you are being asked to show that u, v, w form a basis for V)
2. Using matrices, create an algorithm that takes a matrix of dimension N x N and...
2. Using matrices, create an algorithm that takes a matrix of dimension N x N and feed it in a spiral shape with the sequential number from 1 to N^2. Then do an algorithm in PSEint
Suppose A is an n × n matrix with the property that the equation Ax =...
Suppose A is an n × n matrix with the property that the equation Ax = b has at least one solution for each b in R n . Explain why each equation Ax = b has in fact exactly one solution
Suppose the system AX = B is consistent and A is a 6x3 matrix. Suppose the...
Suppose the system AX = B is consistent and A is a 6x3 matrix. Suppose the maximum number of linearly independent rows in A is 3. Discuss: Is the solution of the system unique?
Why matrix can be multiplied by itself if and only if it is a square matrix?
Why matrix can be multiplied by itself if and only if it is a square matrix?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT