Question

In: Advanced Math

Suppose G is a connected cubic graph (regular of degree 3) and e is an edge...

Suppose G is a connected cubic graph (regular of degree 3) and e is an edge such that G − e has two connected components G1 and G2

(a) Explain what connected means.

(b) We say that e is a____________ of G

(c) show that G1 has an odd number of vertices.

(d) draw a connected cubic graph G with an edge e as above.

Solutions

Expert Solution


Related Solutions

Let G be connected, and let e be an edge of G. Prove that e is...
Let G be connected, and let e be an edge of G. Prove that e is a bridge if and only if it is in every spanning tree of G.
You are given an undirected graph G = ( V, E ) in which the edge...
You are given an undirected graph G = ( V, E ) in which the edge weights are highly restricted. In particular, each edge has a positive integer weight from 1 to W, where W is a constant (independent of the number of edges or vertices). Show that it is possible to compute the single-source shortest paths in such a graph in O(E+V) time.
Given a connected graph G where edge costs are pair-wise distinct, prove or disprove that the...
Given a connected graph G where edge costs are pair-wise distinct, prove or disprove that the G has a unique MST. Please write Pseudo-code for the algorithms.
Suppose that a graph G is such that each vertex of G has degree at least...
Suppose that a graph G is such that each vertex of G has degree at least 100. Show that G contains a cycle of length at least 101, i.e., a cycle passing through at least 101 vertices.
Design a linear-time algorithm which, given an undirected graph G and a particular edge e in...
Design a linear-time algorithm which, given an undirected graph G and a particular edge e in it, determines whether G has a cycle containing e. Your algorithm should also return the length (number of edges) of the shortest cycle containing e, if one exists. Just give the algorithm, no proofs are necessary. Hint: you can use BFS to solve this.
A maximal plane graph is a plane graph G = (V, E) with n ≥ 3...
A maximal plane graph is a plane graph G = (V, E) with n ≥ 3 vertices such that if we join any two non-adjacent vertices in G, we obtain a non-plane graph. a) Draw a maximal plane graphs on six vertices. b) Show that a maximal plane graph on n points has 3n − 6 edges and 2n − 4 faces. c) A triangulation of an n-gon is a plane graph whose infinite face boundary is a convex n-gon...
Suppose T is a minimal spanning tree found by Prim’s algorithm in a connected graph G....
Suppose T is a minimal spanning tree found by Prim’s algorithm in a connected graph G. (i) Show that either T contains the n-1 smallest edges, or the n-1 smallest edges form a subgraph which contains a cycle. (ii) Show that if an edge (a, b) is not in T and if P is the unique path in T from a to b, then for each edge e in P the weight of e is less than the weight of...
A tree is a circuit-free connected graph. A leaf is a vertex of degree 1 in...
A tree is a circuit-free connected graph. A leaf is a vertex of degree 1 in a tree. Show that every tree T = (V, E) has the following properties: (a) There is a unique path between every pair of vertices. (b) Adding any edge creates a cycle. (c) Removing any edge disconnects the graph. (d) Every tree with at least two vertices has at least two leaves. (e) | V |=| E | +1.
Suppose the unweighted graph graph G = (V, E), represents connections between cities in a country. Salesman wants to get from city A to city P using the unweighted graph G = (V, E) of cities.
Algorithm and Data StructuresSuppose the unweighted graph graph G = (V, E), represents connections between cities in a country. Salesman wants to get from city A to city P using the unweighted graph G = (V, E) of cities.a) Explain how the salesman use BFS algorithm to get from city A to city P passing smallest number of cities. (all steps required)b) Now the salesman likes to visit city R on his way to city P. Describe an efficient algorithm...
Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular,...
Let G be a bipartite graph and r ∈ Z>0. Prove that if G is r-regular, then G has a perfect matching. HINT:  Use the Marriage Theorem and the Pigeonhole Principle. Recall that G is r-regular means every vertex of G has degree
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT