Question

In: Computer Science

A graph G = (V, E) is a near-tree if it is connected and has at...

A graph G = (V, E) is a near-tree if it is connected and has at most n+ 8 edges, where n = |V |. Give an algorithm with running time O(n) that takes a near-tree G with costs on its edges, and returns a minimum spanning tree of G. Assume all the edge costs are distinct.

Solutions

Expert Solution

`Hey,

Note: Brother if you have any queries related the answer please do comment. I would be very happy to resolve all your queries.

Kindly revert for any queries

Thanks.


Related Solutions

ii. Let G = (V, E) be a tree. Prove G has |V | − 1...
ii. Let G = (V, E) be a tree. Prove G has |V | − 1 edges using strong induction. Hint: In the inductive step, choose an edge (u, v) and partition the set vertices into two subtrees, those that are reachable from u without traversing (u, v) and those that are reachable from v without traversing (u, v). You will have to reason why these subtrees are distinct subgraphs of G. iii. What is the total degree of a...
# Problem Description Given a directed graph G = (V, E), find the number of connected...
# Problem Description Given a directed graph G = (V, E), find the number of connected components in G. # Input The graph has `n` vertices and `m` edges. There are m + 1 lines, the first line gives two numbers `n` and `m`, describing the number of vertices and edges. Each of the following lines contains two numbers `a` and `b` meaning there is an edge (a,b) belong to E. All the numbers in a line are separated by...
If G = (V, E) is a graph and x ∈ V , let G \...
If G = (V, E) is a graph and x ∈ V , let G \ x be the graph whose vertex set is V \ {x} and whose edges are those edges of G that don’t contain x. Show that every connected finite graph G = (V, E) with at least two vertices has at least two vertices x1, x2 ∈ V such that G \ xi is connected.
Let G be a connected graph and let e be a cut edge in G. Let...
Let G be a connected graph and let e be a cut edge in G. Let K be the subgraph of G defined by: V(K) = V(G) and E(K) = E(G) - {e} Prove that K has exactly two connected components. First prove that e cannot be a loop. Thus the endpoint set of e is of the form {v,w}, where v ≠ w. If ṽ∈V(K), prove that either there is a path in K from v to ṽ, or...
Consider an unweighted, undirected graph G = <V, E>. The neighbourhood of a node v ∈...
Consider an unweighted, undirected graph G = <V, E>. The neighbourhood of a node v ∈ V in the graph is the set of all nodes that are adjacent (or directly connected) to v. Subsequently, we can define the neighbourhood degree of the node v as the sum of the degrees of all its neighbours (those nodes that are directly connects to v). (a) Design an algorithm that returns a list containing the neighbourhood degree for each node v ∈...
A maximal plane graph is a plane graph G = (V, E) with n ≥ 3...
A maximal plane graph is a plane graph G = (V, E) with n ≥ 3 vertices such that if we join any two non-adjacent vertices in G, we obtain a non-plane graph. a) Draw a maximal plane graphs on six vertices. b) Show that a maximal plane graph on n points has 3n − 6 edges and 2n − 4 faces. c) A triangulation of an n-gon is a plane graph whose infinite face boundary is a convex n-gon...
Prove or disprove: If G = (V; E) is an undirected graph where every vertex has...
Prove or disprove: If G = (V; E) is an undirected graph where every vertex has degree at least 4 and u is in V , then there are at least 64 distinct paths in G that start at u.
Let G = (V, E) be a directed graph, with source s ∈ V, sink t...
Let G = (V, E) be a directed graph, with source s ∈ V, sink t ∈ V, and nonnegative edge capacities {ce}. Give a polynomial-time algorithm to decide whether G has a unique minimum s-t cut (i.e., an s-t of capacity strictly less than that of all other s-t cuts).
Determine, for a given graph G =V,E and a positive integer m ≤ |V |, whether...
Determine, for a given graph G =V,E and a positive integer m ≤ |V |, whether G contains a clique of size m or more. (A clique of size k in a graph is its complete subgraph of k vertices.) Determine, for a given graph G = V,E and a positive integer m ≤ |V |, whether there is a vertex cover of size m or less for G. (A vertex cover of size k for a graph G =...
Suppose T is a minimal spanning tree found by Prim’s algorithm in a connected graph G....
Suppose T is a minimal spanning tree found by Prim’s algorithm in a connected graph G. (i) Show that either T contains the n-1 smallest edges, or the n-1 smallest edges form a subgraph which contains a cycle. (ii) Show that if an edge (a, b) is not in T and if P is the unique path in T from a to b, then for each edge e in P the weight of e is less than the weight of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT