Question

In: Biology

Discuss homeostasis, both negative and positive feedback and provide examples: Describe the structural hierarchy of the...

Discuss homeostasis, both negative and positive feedback and provide examples:

Describe the structural hierarchy of the human body.

Solutions

Expert Solution

Homeostasis, any self-regulating process by which biological systems tend to maintain stability while adjusting to conditions that are optimal for survival. If homeostasis is successful, life continues; if unsuccessful, disaster or death ensues. The stability attained is actually a dynamic equilibrium, in which continuous change occurs yet relatively uniform conditions prevail.

Any system in dynamic equilibrium tends to reach a steady state, a balance that resists outside forces of change. When such a system is disturbed, built-in regulatory devices respond to the departures to establish a new balance; such a process is one of feedback control. All processes of integration and coordination of function, whether mediated by electrical circuits or by nervous and hormonal systems, are examples of homeostatic regulation.

A familiar example of homeostatic regulation in a mechanical system is the action of a room-temperature regulator, or thermostat. The heart of the thermostat is a bimetallic strip that responds to temperature changes by completing or disrupting an electric circuit. When the room cools, the circuit is completed, the furnace operates, and the temperature rises. At a preset level the circuit breaks, the furnace stops, and the temperature drops. Biological systems, of greater complexity, however, have regulators only very roughly comparable to such mechanical devices. The two types of systems are alike, however, in their goals—to sustain activity within prescribed ranges, whether to control the thickness of rolled steel or the pressure within the circulatory system.

The control of body temperature in humans is a good example of homeostasis in a biological system. In humans, normal body temperature fluctuates around the value of 37 °C (98.6 °F), but various factors can affect this value, including exposure, hormones, metabolic rate, and disease, leading to excessively high or low temperatures. The body’s temperature regulation is controlled by a region in the brain called the hypothalamus. Feedback about body temperature is carried through the bloodstream to the brain and results in compensatory adjustments in the breathing rate, the level of blood sugar, and the metabolic rate. Heat loss in humans is aided by reduction of activity, by perspiration, and by heat-exchange mechanisms that permit larger amounts of blood to circulate near the skin surface. Heat loss is reduced by insulation, decreased circulation to the skin, and cultural modification such as the use of clothing, shelter, and external heat sources. The range between high and low body temperature levels constitutes the homeostatic plateau—the “normal” range that sustains life. As either of the two extremes is approached, corrective action (through negative feedback) returns the system to the normal range.

The concept of homeostasis has also been applied to ecological settings. First proposed by Canadian-born American ecologist Robert MacArthur in 1955, homeostasis in ecosystems is a product of the combination of biodiversity and large numbers of ecological interactions that occur between species. It was thought of as a concept that could help to explain an ecosystem’s stability—that is, its persistence as a particular ecosystem type over time (see ecological resilience). Since then, the concept has changed slightly to incorporate the ecosystem’s abiotic (nonliving) parts; the term has been used by many ecologists to describe the reciprocation that occurs between an ecosystem’s living and nonliving parts to maintain the status quo. The Gaia Hypothesis—the model of Earth posited by English scientist James Lovelock that considers its various living and nonliving parts as components of a larger system or single organism—makes the assumption that the collective effort of individual organisms contributes to homeostasis at the planetary level

structural hierarchy of the human body:

In humans, organ systems integrating these organs are at the top of this hierarchy. For example, the circulatory system controls the circulation of blood and lymph fluid throughout the body, and the nervous system controls the transmission of information between parts of the body and the brain and spinal cord. In addition, the endocrine system uses hormones to regulate the activities of various parts of the body. Moreover, in many cases, these organ systems work together to maintain homeostasis, such as in the regulation of blood glucose levels.

Conversely, as we delve further into cells, we see that they contain organelles, which are made up of molecules such as proteins, lipids, and sugars, which in turn are made of various atomic elements.


Related Solutions

Negative and positive feedback mechanisms used to maintain homeostasis. Describe one negative and one positive feedback...
Negative and positive feedback mechanisms used to maintain homeostasis. Describe one negative and one positive feedback regulation (8pts). For each negative and positive feedback: What is the variable? (0.5pt) What is the normal range? (0.5 pt) Which conditions may change the variable? (0.5 pt) How the changes to be detected? (1 pt) What is/are the responses(s)? (1pt) What is the final effect? (0.5 pt)
Discuss homeostasis within the context of positive and negative feedback. What type of feedback is predominantly...
Discuss homeostasis within the context of positive and negative feedback. What type of feedback is predominantly used? Why? Be able to give examples of both types of feedback.
Positive feedback mechanisms are used to maintain homeostasis. Describe the positive feedback regulation, the contractions of...
Positive feedback mechanisms are used to maintain homeostasis. Describe the positive feedback regulation, the contractions of labor, and answer the questions below in great detail. (8 pts) For positive feedback: What is the variable? (0.5 pt) What is the normal range? (0.5 pt) Which conditions may change the variable? (0.5 pt) How the changes to be detected? (1 pt) What is/are the response(s)? (1 pt) What is the final effect? (0.5 pt)
List 10 body mechanisms that are maintained in homeostasis by negative feedback. Why does positive feedback...
List 10 body mechanisms that are maintained in homeostasis by negative feedback. Why does positive feedback usually lead to disease or death? Describe two exceptions to positive feedback leading to disease or death.
1). Explain why positive feedback is more likely than negative feedback to disturb homeostasis. 2). What...
1). Explain why positive feedback is more likely than negative feedback to disturb homeostasis. 2). What is the main chemical similarity between carbohydrates and lipids? What are the main differences between them? 3). Define hypotonic, isotonic, and hypertonic, and explain why these concepts are important in clinical medical practice. 4). Summarize the structural and functional differences between DNA and RNA.
7. What is the primary mechanism for maintaining homeostasis? Select one: a. positive feedback b. negative feedback c. intrinsic...
7. What is the primary mechanism for maintaining homeostasis? Select one: a. positive feedback b. negative feedback c. intrinsic control d. extrinsic control e. homeostatic control Feedback The correct answer is: negative feedback plz explain a.b c d e all explain in short answer
Give two examples of a negative feedback loop and one example of a positive feedback loop...
Give two examples of a negative feedback loop and one example of a positive feedback loop within normal physiologic function. Describe each homeostatic mechanism using detailed descriptions. For each example predict the result at an organismal level if normal function was impaired at the molecular level.
Describe one example of positive feedback and one of negative feedback, in other systems that have...
Describe one example of positive feedback and one of negative feedback, in other systems that have many interacting parts – such as economic, social, political systems.
Label AND Describe a feedback loop for: ONE negative feedback ONE positive feedback ONE antagonistic pair...
Label AND Describe a feedback loop for: ONE negative feedback ONE positive feedback ONE antagonistic pair of feedbacks Include all 5 steps for each feedback
Discuss the positive and negative images of nurses in social media and television. Provide examples.
Discuss the positive and negative images of nurses in social media and television. Provide examples.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT