In: Finance
State Probability A B
Boom .25 12% 4%
Bust .75 6% 18%
what is the standard deviation of the return on the portfolio?
Expected return on individual stock = Sum(Probability*Return)
Variance of individual stock = Sum(Probability*Squared Deviation) = [Probability*(X-R)2]
Std. Deviation of individual stock = Square root (Variance of Stock)
Covariance = Sum[Probability*(X-RA)*(X-RB)]
State | Probability | Return on A(%) | Probability*Return | Deviation(X-RA) | (X-RA)^2 | Probability*(X-RA)^2 |
Boom | 0.25 | 12 | 3 | 4.5 | 20.25 | 5.0625 |
Bust | 0.75 | 6 | 4.5 | -1.5 | 2.25 | 1.6875 |
Expected Return RA= | 7.5 | Variance = | 6.75 | |||
Std. Deviation= | 2.598076 | |||||
State | Probability | Return on B(%) | Probability*Return | Deviation (X-R) | (X-R)^2 | Probability*(X-R)^2 |
Boom | 0.25 | 4 | 1 | -10.5 | 110.25 | 27.5625 |
Bust | 0.75 | 18 | 13.5 | 3.5 | 12.25 | 9.1875 |
Expected Return R= | 14.5 | Variance = | 36.75 | |||
Std. Deviation= | 6.062178 | |||||
State | Probability | Deviation(X-R) | Deviation (X-R) | (X-R)*(X-R) | Probability*(X-R)*(X-R) | |
Boom | 0.25 | 4.5 | -10.5 | -47.25 | -11.8125 | |
Bust | 0.75 | -1.5 | 3.5 | -5.25 | -3.9375 | |
Covariance= | -15.75 |
Variance of Portfolio = w12 * ơ12 + w22 * ơ22 + 2 * w1 * w2 * Covariance(1,2)
Assuming equal amount is invested in both the stocks, wA=wB=0.5
So, Variance of portfolio = 0.25*6.75 + 0.25*36.75 + 2*0.5*0.5*(-15.75)
= 1.6875 + 9.1875 - 7.875
= 3 %2
Hence, Std. Deviation of portfolio = Sqrt(3)
= 1.732 %