Question

In: Physics

A distant galaxy emits light that has a wavelength of 596.8 nm. On earth, the wavelength...

A distant galaxy emits light that has a wavelength of 596.8 nm. On earth, the wavelength of this light is measured to be 601.9 nm. (a) Decide whether this galaxy is approaching or receding from the earth. (b) Find the speed of the galaxy relative to the earth. (Give your answer to 4 significant digits. Use 2.998 × 108 m/s as the speed of light.)

Solutions

Expert Solution

The given problem can be solved using the Dopplers equation.

a)the Galaxy is approaching or receding from the earth can be decide using below Dopplers equation

+ Sign Galaxy is approaching the earth.

- sign Galaxy is receding from earth.

b)Speed of Galaxy relative to earth can be find using below formula interms of wavelength.

  

​​​​

a)Galaxy is receding from the earth since f​​​​​​o is less than f​​​​​​s​​ as is greater than that is 601.9 nm is greater than 596.8 nm

b)speed of Galaxy relative to earth Vrel=2.998*106 m/s (upto 4 significant figures).


Related Solutions

An interference pattern is produced by light with a wavelength 600 nm from a distant source...
An interference pattern is produced by light with a wavelength 600 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.560 mm . If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima? What would be the angular position of the second-order, two-slit, interference maxima in this case? Let the slits have a width 0.280 mm . In terms of the intensity I0...
An LED that emits light of wavelength λ = 614 nm illuminates the phototube. A reverse...
An LED that emits light of wavelength λ = 614 nm illuminates the phototube. A reverse bias is applied to the phototube (a voltage that opposes the current flow). This is adjusted carefully until the photocurrent drops to zero. The stopping potential is found to be Vo = 0.162 V. The LED can now be changed and the process repeated for a different λ. Then the data can be plotted to determine Planck's constant, h. For the data collected above...
A Blackbody radiator emits blue light with a wavelength of 475 nanometres (nm). a) Describe what...
A Blackbody radiator emits blue light with a wavelength of 475 nanometres (nm). a) Describe what a “Blackbody radiator” is. b) How much energy is being produced by each blue light photon emitted (in units of joules AND electron-volts)?
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon...
A helium neon laser emits red light of wavelength 632.8 nm, which is obtained when neon atoms move from level 5s to level 3p. Given is a tube that contains 0.25 moles of a helium-neon mix, of which 15% are neon atoms. Also given is that while the laser is active, around 2% of the neon atoms are located at one of the two given energy levels at any time. a) what is the difference in energy between levels 5s...
A distant galaxy is simultaneously rotating and receding from the earth. As the drawing shows, the...
A distant galaxy is simultaneously rotating and receding from the earth. As the drawing shows, the galactic center is receding from the earth at a relative speed of uG = 2.00 × 106 m/s. Relative to the center, the tangential speed is vT = 0.380 × 106 m/s for locations A and B, which are equidistant from the center. When the frequencies of the light coming from regions A and B are measured on earth, they are not the same...
A particular orange light has a wavelength of 592.0 nm. a. What is the frequency (in...
A particular orange light has a wavelength of 592.0 nm. a. What is the frequency (in Hz) of this light? b. What is the energy (in J) of exactly one photon of this light? Also: Describe what type of molecular process that would occur upon absorption of radiation from each of the following regions of the EM spectrum: a. Microwave b. Infrared c. Visible d. Ultraviolet e. X-ray
An atom in an l=1 state emits a photon of wavelength 500.000 nm as it drops...
An atom in an l=1 state emits a photon of wavelength 500.000 nm as it drops to an l=0 state when there is no external magnetic field. a)Calculate the Zeeman effect splitting (in electron volts) between adjacent energy levels when this atom is placed in an external3.00-Tmagnetic field. (eV) b) List the wavelengths of the 3 spectral lines that could be observed with a high-resolution spectrographas a result of the interaction of the atom with the B field. Hint: you...
An atom in a 3d state emits a photon of wavelength 475.082 nm when it decays...
An atom in a 3d state emits a photon of wavelength 475.082 nm when it decays to a 2p state. (a) What is the energy (in electron volts) of the photon emitted in this transition? (b) Use the selection rules described in Section 41.4 to find the allowed transitions if the atom is now in an external magnetic field of 3.500 T. Ignore the effects of the electron’s spin. (c) For the case in part (b), if the energy of...
calculate the energy of red light with a wavelength of 703.2 nm
calculate the energy of red light with a wavelength of 703.2 nm
In the photoelectric experiment, green light, with a wavelength of 522 nm is the longest-wavelength radiation...
In the photoelectric experiment, green light, with a wavelength of 522 nm is the longest-wavelength radiation that can cause the photoemission ofelectrons from a clean sodium surface. a) What is the work function of sodium, in electron-volts? b) If UV (ultraviolet) radiation of wavelength 250 nm is incident to the sodium surface, whatwill be the kinetic energy of the photoemitted electrons, in electron-volts?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT