Question

In: Advanced Math

Poducts z1 and z2 as a z1=5+3i and z2=4-2i, write the following in the form a+bi

Poducts  z1 and z2 as a z1=5+3i and z2=4-2i, write the following in the form a+bi

Solutions

Expert Solution

Given

z1=5+3i 

z2​ =4−2i 

 

x=4⋅ z1+6⋅ z2

  

x=4⋅ (5+3i)+6⋅ (4−2i) 

x=20+12i+24−12i 

x=(20+24)+(12−12)i 

x=44

y=z1⋅ z 2

  

y=(5+3i)⋅ (4−2i) 

=5⋅ 4+5⋅ (−2i)+3i⋅ z 1

​=5+3i 

z 2

=4−2i 

 

x=4⋅ z 1+6⋅ z 2

​x=4⋅ (5+3i)+6⋅ (4−2i) 

x=20+12i+24−12i 

x=(20+24)+(12−12)i 

x=44

y=z 1⋅ z2

  

y=(5+3i)⋅ (4−2i) 

5⋅ 4+5⋅ (−2i)+3i⋅ 4+3i⋅ (−2i) 

y=20−10i+12i−6i²

  

y=20−10i+12i+6 

y=20+6+i(−10+12) 

y=26+2i

⋅ (−2i) 

y=20−10i+12i−6i²

  

y=20−10i+12i+6 

y=20+6+i(−10+12) 

y=26+2i

 


Related Solutions

For the following exercises, find z1 z2 in polar form.
For the following exercises, find z1 z2 in polar form.
given z1=2+j3, z2=7+j1, z3=5+j9. find the value of the following expressions in both coordinate and Euler...
given z1=2+j3, z2=7+j1, z3=5+j9. find the value of the following expressions in both coordinate and Euler forms. a) z1z2,z2z3,z3z3(dash on top z),(z1+z3)z2 b) z1/z2,z2/z3,z3(dash on to[ z)/z3,(z1+z2)/z3.
Phasors w=5+2i, u=2-2i, are two complex numbers written in component form. a. Draw them in the...
Phasors w=5+2i, u=2-2i, are two complex numbers written in component form. a. Draw them in the imaginary plane. b. find w and u in terms of their magnitude and phase. c. Find the new imaginary number g=w*u, and demonstrate that the magnitude and phase of g is the same whether you multiply w*u in component form or simply multiply their magnitudes and phases together.
(TestSumSeries.java) Write a recursive method that sums up the following series: s(i) = 1/1+ 3/3+3/5+5/7+⋯+ (i+1)/(2i+1)+(i+2)/(2i+1)...
(TestSumSeries.java) Write a recursive method that sums up the following series: s(i) = 1/1+ 3/3+3/5+5/7+⋯+ (i+1)/(2i+1)+(i+2)/(2i+1) i = 0, 1, 2, 3, … When i is even, the term is (i+1)/(2i+1) When i is odd, the term is (i+2)/(2i+1) In the main method, display the s(i) for i = 0, 1, 2, 3, 4, 5
Compute the length and absolute value of the following vectors: a. x = [2, 4, 7] b. y = [2, -4, 7] c. z = [5 + 3i, -3 + 4i, 2 - 7i]
Compute the length and absolute value of the following vectors:a. x = [2, 4, 7]b. y = [2, -4, 7]c. z = [5 + 3i, -3 + 4i, 2 - 7i]
Complex Variable Evaluate the following integrals: a) int_c (z^2/((z-3i)^2)) dz; c=lzl=5 b) int_c (1/((z^3)(z-4))) dz ;...
Complex Variable Evaluate the following integrals: a) int_c (z^2/((z-3i)^2)) dz; c=lzl=5 b) int_c (1/((z^3)(z-4))) dz ; c= lzl =1 c) int_c (2(z^2)-z+1)/(((z-1)^2)(z+1)) dz ; c= lzl=3 (Details Please)
Write the following matrices into row echelon form.
Exercise1. Write the following matrices into row echelon form.
Given z = 5 - 2i. Determine the following: a) Re(z) b) Im(z) c) Arg(z) d)...
Given z = 5 - 2i. Determine the following: a) Re(z) b) Im(z) c) Arg(z) d) arg(z) e) conjugate(z) f) modulus(z) g) z in polar form h) z in exponential form i) z^2 in polar form.
Write an equation in standard form given slope =-3/4; P(-1,2)
Write an equation in standard form given slope =-3/4; P(-1,2)  a. 3x+ 4y =5 b. 3x-4y=5 c. 3x-4y=-5 d. 3x+4y =-5
Exercise1. Write the following matrices into row echelon form.
Exercise1. Write the following matrices into row echelon form.  (a) A=⎛⎜⎝1132−22100474⎞⎟⎠A=(1132−22100474) (c) C=⎛⎜⎝121457210121331578⎞⎟⎠C=(121457210121331578) (b) B=⎛⎜⎝234304131⎞⎟⎠B=(234304131) (d) D=⎛⎜ ⎜ ⎜⎝11111−11−1−1−111−11λλ⎞⎟ ⎟ ⎟⎠
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT