In: Advanced Math
Poducts z1 and z2 as a z1=5+3i and z2=4-2i, write the following in the form a+bi
Given
z1=5+3i
z2 =4−2i
x=4⋅ z1+6⋅ z2
x=4⋅ (5+3i)+6⋅ (4−2i)
x=20+12i+24−12i
x=(20+24)+(12−12)i
x=44
y=z1⋅ z 2
y=(5+3i)⋅ (4−2i)
=5⋅ 4+5⋅ (−2i)+3i⋅ z 1
=5+3i
z 2
=4−2i
x=4⋅ z 1+6⋅ z 2
x=4⋅ (5+3i)+6⋅ (4−2i)
x=20+12i+24−12i
x=(20+24)+(12−12)i
x=44
y=z 1⋅ z2
y=(5+3i)⋅ (4−2i)
5⋅ 4+5⋅ (−2i)+3i⋅ 4+3i⋅ (−2i)
y=20−10i+12i−6i²
y=20−10i+12i+6
y=20+6+i(−10+12)
y=26+2i
⋅ (−2i)
y=20−10i+12i−6i²
y=20−10i+12i+6
y=20+6+i(−10+12)
y=26+2i