Solution : Write the following matrices into row echelon form.
(a). A=(1132−22100474)R2→R2+2R1">A=⎛⎜⎝1132−22100474⎞⎟⎠R2→R2+2R1A=(1132−22100474)R2→R2+2R1∼(113204740474)R3→R3−R2">∼⎛⎜⎝113204740474⎞⎟⎠R3→R3−R2∼(113204740474)R3→R3−R2 ∼(113204740000)R2→R2×14">
∼(113204740000)R2→R2×14">∼⎛⎜⎝113204740000⎞⎟⎠R2→R2×14∼(113204740000)R2→R2×14 ∼(1132017/410000)">∼⎛⎜⎝1132017/410000⎞⎟⎠∼(1132017/410000)
Therefore rank(A)=2,null(A)=2◼">rank(A)=2,null(A)=2■
rank(A)=2,null(A)=2◼">rank(A)=2,null(A)=2◼ (b) B=(234304131)R1↔R3(131304234)R2→R2−3R1R3→R3−2R1">B=⎛⎜⎝234304131⎞⎟⎠R1↔R3⎛⎜⎝131304234⎞⎟⎠R2→R2−3R1R3→R3−2R1B=(234304131)R1↔R3(131304234)R2→R2−3R1R3→R3−2R1
∼(1310−910−32)∼(13101−190−32)∼(13101−190013)∼(13101−19001)">∼⎛⎜⎝1310−910−32⎞⎟⎠∼⎛⎜ ⎜⎝13101−190−32⎞⎟ ⎟⎠∼⎛⎜ ⎜⎝13101−190013⎞⎟ ⎟⎠∼⎛⎜ ⎜⎝13101−19001⎞⎟ ⎟⎠∼(1310−910−32)∼(13101−190−32)∼(13101−190013)∼(13101−19001)
Therefore rank(B)=3,null(B)=0◼">rank(B)=3,null(B)=0■rank(B)=3,null(B)=0◼
(c) C=(121457210121331578)R2→R2−2R1R3→R3−3R1">C=⎛⎜⎝121457210121331578⎞⎟⎠R2→R2−2R1R3→R3−3R1C=(121457210121331578)R2→R2−2R1R3→R3−3R1
∼(1214570−3−2−7−8−130−3−2−7−8−13)R2→R2−13R2R3→R3−R2">∼⎛⎜⎝1214570−3−2−7−8−130−3−2−7−8−13⎞⎟⎠R2→R2−13R2R3→R3−R2∼(1214570−3−2−7−8−130−3−2−7−8−13)R2→R2−13R2R3→R3−R2
∼(12145701237383133000000)">∼⎛⎜ ⎜⎝12145701237383133000000⎞⎟ ⎟⎠∼(12145701237383133000000) Therefore. rank(C)=2,null(C)=4◼">rank(C)=2,null(C)=4■rank(C)=2,null(C)=4◼
(d) D=(11111−11−1−1−111−11λλ)R2→R2−R1R3→R3+R1R4→R4+R1">D=⎛⎜ ⎜ ⎜⎝11111−11−1−1−111−11λλ⎞⎟ ⎟ ⎟⎠R2→R2−R1R3→R3+R1R4→R4+R1D=(11111−11−1−1−111−11λλ)R2→R2−R1R3→R3+R1R4→R4+R1
∼(11110−20−2002202λ+1λ+1)R2→−12R2R3→R3×12R4→R4+R2">∼⎛⎜ ⎜ ⎜⎝11110−20−2002202λ+1λ+1⎞⎟ ⎟ ⎟⎠R2→−12R2R3→R3×12R4→R4+R2∼(11110−20−2002202λ+1λ+1)R2→−12R2R3→R3×12R4→R4+R2
∼(11110101001100λ+1λ−1)R4→R4−(λ+1)R3">∼⎛⎜ ⎜ ⎜⎝11110101001100λ+1λ−1⎞⎟ ⎟ ⎟⎠R4→R4−(λ+1)R3∼(11110101001100λ+1λ−1)R4→R4−(λ+1)R3 ∼(1111010100110001)">∼⎛⎜ ⎜ ⎜⎝1111010100110001⎞⎟ ⎟ ⎟⎠∼(1111010100110001)
Therefore rank(D)=4,null(D)=0◼">rank(D)=4,null(D)=0■