In: Statistics and Probability
We are given that P = population proportion of persons 20-30 years old that hold license degrees (unknown) and we are asked to test H0: p≤0.67 versus H1: p>0.67 The observed sample proportion is pˆ = 61/79 = 0.772 from a random sample of size 79. compute the following:
a) P- value of the test
b) Probability of making Type II error and the power of this test at p= 0.87
Answer:
a)
Given,
Null hypothesis
Ho : p <= 0.67
Alternative hypothesis
Ha : p > 0.67
sample proportion p^ = x/n
substitute values
= 61/79
= 0.772
consider,
test statistic z = (p^ - p)/sqrt(pq/n)
substitute values
= (0.772 - 0.67)/sqrt(0.67(1-0.67)/79)
z = 1.931
now corresponding p value is given as follows
i.e.,
P(z < 1.931) = 0.0267415
P value = 0.0267415 [since from z table]
= 0.0027
b)
Given,
p = 0.87
p^ = 0.67
standard error of sampling distribution = sqrt(p^(1-p^)n)
substitute values
= sqrt(0.67(1-0.67)/79)
standard error of sampling distribution = 0.0529
standard error of true proportion = sqrt(pq/n)
substitute values
= sqrt(0.87(1-0.87)/79)
standard error of true proportion = 0.0378
assume , alpha = 0.05
So ,
Z(alpha) = 1.645
let us consider,
p^ <= z*σp^ + p^
substitute values
p^ <= 1.645*0.0529 + 0.67
p^ <= 0.0870 + 0.67
p^ <= 0.7570
Type II error =
= P(p^ <= 0.7570)
where as p = 0.87
= P((p^ - p)/σp < (0.757 - 0.87)/0.0378)
On solving we get
= P(z < - 2.986)
= 0.0014133 [since from z table]
= 0.0014
Type II error = 0.0014