Question

In: Statistics and Probability

1. Consider a standard normal random variable with μ = 0 and standard deviation σ =...

1. Consider a standard normal random variable with μ = 0 and standard deviation σ = 1. (Round your answers to four decimal places.)

(a)    P(z < 2) =



(b)    P(z > 1.16) =



(c)    P(−2.31 < z < 2.31) =



(d)    P(z < 1.82) =

2. Find the following probabilities for the standard normal random variable z. (Round your answers to four decimal places.)

(a)    P(−1.49 < z < 0.65) =



(b)    P(0.56 < z < 1.74) =



(c)    P(−1.54 < z < −0.46) =



(d)    P(z > 1.36) =



(e)    P(z < −4.38) =

3. Find a z0 such that

P(z > z0) = 0.0268.

(Round your answer to two decimal places.)

z0 =

(b)Find a z0 such that

P(z < z0) = 0.9115.

(Round your answer to two decimal places.)

z0 =

Solutions

Expert Solution

Refer to the standard normal distribution table shown below.

1) (a) P(Z<2) = 0.9772 (refer to row 2.0 and column 0.00)

(b) P(Z>1.16) = 1 - P(Z<1.16) = 1−0.877=0.123

(c) P(-2.31<Z<2.31) = P ( Z<2.31 )−P (Z<−2.31) = P (Z<2.31 ) - [1−P ( Z<2.31)] = (2*P ( Z<2.31 )) - 1 = (2*0.9896)-1 = 0.9792

(d) P(Z<1.82) = 0.9656 (refer to row 1.8 and column 0.02)

We solve only 4 subparts in one post. Please post again for other solutions.


Related Solutions

1. Consider a standard normal random variable with μ = 0 and standard deviation σ =...
1. Consider a standard normal random variable with μ = 0 and standard deviation σ = 1. (Round your answers to four decimal places.) (a)    P(z < 2) = (b)    P(z > 1.16) = (c)    P(−2.31 < z < 2.31) = (d)    P(z < 1.82) = 2. Find the following probabilities for the standard normal random variable z. (Round your answers to four decimal places.) (a)    P(−1.49 < z < 0.65) = (b)    P(0.56 < z < 1.74) = (c)    P(−1.54 < z < −0.46) = (d)    P(z...
Consider a standard normal random variable with μ = 0 and standard deviation σ = 1....
Consider a standard normal random variable with μ = 0 and standard deviation σ = 1. (Round your answers to four decimal places.) (a)     P(z < 2) = (b)     P(z > 1.13) = (c)     P(−2.39 < z < 2.39) = (d)     P(z < 1.88) =
A. A normal random variable has an unknown mean μ and a standard deviation σ =...
A. A normal random variable has an unknown mean μ and a standard deviation σ = 2. If the probability that x exceeds 6.5 is .9732; find μ. B. A standard normal random variable has μ = 0 and a standard deviation σ = 1. Find the probability of less than -2.73. C. A standard normal random variable has μ = 0 and a standard deviation σ = 1. Find the probability greater than 3.28. D. A standard normal random...
1) A normal random variable x has an unknown mean μ and standard deviation σ =...
1) A normal random variable x has an unknown mean μ and standard deviation σ = 2. If the probability that x exceeds 4.6 is 0.8023, find μ. (Round your answer to one decimal place.) μ = 2) Answer the question for a normal random variable x with mean μ and standard deviation σ specified below. (Round your answer to four decimal places.) μ = 1.3 and σ = 0.19. Find P(1.50 < x < 1.71). P(1.50 < x <...
A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18....
A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18. Find the probabilities of these X-values. (Round your answers to four decimal places.) (a)     1.00 < X < 1.50 (b)     X > 1.39 (c)     1.45 < X < 1.60
Let X be a random variable with mean μ and standard deviation σ. Consider a new...
Let X be a random variable with mean μ and standard deviation σ. Consider a new random variable Z, obtained by subtracting the constant μ from X and dividing the result by the constant σ: Z = (X –μ)/σ. The variable Z is called a standardised random variable. Use the laws of expected value and variance to show the following: a E(Z) = 0 b V (Z) = 1
Let Z be a normal random variable with mean µ = 0 and standard deviation σ...
Let Z be a normal random variable with mean µ = 0 and standard deviation σ = 1, that is, Z ∼ N(0, 1). Find each of the following: (a) P(Z ≤ −1.13). (b) P(Z ≥ −2.18). (c) P(2.13 ≤ Z ≤ 2.57). (d) P(−2.3 ≤ Z ≤ −1.1). (e) P(0 ≤ Z ≤ 1.54). (f) P(−1.54 ≤ Z ≤ 1.54). (g) N(1.1243). (h) N(−1.1243).
Given that x is a normal variable with mean μ = 49 and standard deviation σ...
Given that x is a normal variable with mean μ = 49 and standard deviation σ = 6.2, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 60) (b)  P(x ≥ 50) (c)  P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 43 and standard deviation σ...
Given that x is a normal variable with mean μ = 43 and standard deviation σ = 6.9, find the following probabilities. (Round your answers to four decimal places.) (a) P(x ≤ 60) (b) P(x ≥ 50) (c) P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 107 and standard deviation σ...
Given that x is a normal variable with mean μ = 107 and standard deviation σ = 11, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 120) (b)  P(x ≥ 80) (c)  P(108 ≤ x ≤ 117)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT