Question

In: Biology

make a presentation on nervous system

make a presentation on nervous system

Solutions

Expert Solution

The Nervous System

The nervous system is a network of neurons whose main feature is to generate, modulate and transmit information between all the different parts of the human body. This property enables many important functions of the nervous system, such as regulation of vital body functions (heartbeat, breathing, digestion), sensation and body movements. Ultimately, the nervous system structures preside over everything that makes us human; our consciousness, cognition, behaviour and memories.

The nervous system consists of two divisions;

  

  • Central nervous system (CNS) is the integration and command center of the body
  • Peripheral nervous system (PNS) represents the conduit between the CNS and the body. It is further subdivided into the somatic nervous system (SNS) and the autonomic nervous system (ANS).

Cells of the nervous system

Two basic types of cells are present in the nervous system;

  • Neurons
  • Glial cells

Neurons, or nerve cell, are the main structural and functional units of the nervous system. Every neuron consists of a body (soma) and a number of processes (neurites). The nerve cell body contains the cellular organelles and is where neural impulses (action potentials) are generated. The processes stem from the body, they connect neurons with each other and with other body cells, enabling the flow of neural impulses. There are two types of neural processes that differ in structure and function;

  • Axons are long and conduct impulses away from the neuronal body.
  • Dendrites are short and act to receive impulses from other neurons, conducting the electrical signal towards the nerve cell body.

Every neuron has a single axon, while the number of dendrites varies. Based on that number, there are four structural types of neurons; multipolar, bipolar, pseudounipolar and unipolar.

Types of Neurons

How do neurons function?

The morphology of neurons makes them highly specialized to work with neural impulses; they generate, receive and send these impulses onto other neurons and non-neural tissues.

Synapse

There are two types of neurons, named according to whether they send an electrical signal towards or away from the CNS;

  • Efferent neurons (motor or descending) send neural impulses from the CNS to the peripheral tissues, instructing them how to function.
  • Afferent neurons (sensory or ascending) conduct impulses from the peripheral tissues to the CNS. These impulses contain sensory information, describing the tissue's environment.

The site where an axon connects to another cell to pass the neural impulse is called a synapse. The synapse doesn't connect to the next cell directly. Instead, the impulse triggers the release of chemicals called neurotransmitters from the very end of an axon. These neurotransmitters bind to the effector cell’s membrane, causing biochemical events to occur within that cell according to the orders sent by the CNS

Glial cells

Glial cells, also called neuroglia or simply glia, are smaller non-excitatory cells that act to support neurons. They do not propagate action potentials. Instead, they myelinate neurons, maintain homeostatic balance, provide structural support, protection and nutrition for neurons throughout the nervous system.

This set of functions is provided for by four different types of glial cells;

  • Myelinating glia produce the axon-insulating myelin sheath. These are called oligodendrocytes in the CNS and Schwann cells in the PNS. Remember these easily with the mnemonic "COPS" (Central - Oligodendrocytes; Peripheral - Schwann)
  • Astrocytes (CNS) and satellite glial cells (PNS) both share the function of supporting and protecting neurons.
  • Other two glial cell types are found in CNS exclusively; microglia are the phagocytes of the CNS and ependymal cells which line the ventricular system of the CNS. The PNS doesn’t have a glial equivalent to microglia as the phagocytic role is performed by macrophages.

Most axons are wrapped by a white insulating substance called the myelin sheath, produced by oligodendrocytes and Schwann cells. Myelin encloses an axon segmentally, leaving unmyelinated gaps between the segments called the nodes of Ranvier. The neural impulses propagate through the Ranvier nodes only, skipping the myelin sheath. This significantly increases the speed of neural impulse propagation.

White and gray matter

The white color of myelinated axons is distinguished from the gray colored neuronal bodies and dendrites. Based on this, nervous tissue is divided into white matter and gray matter, both of which has a specific distribution;

  • White matter comprises the outermost layer of the spinal cord and the inner part of the brain.
  • Gray matter is located in the central part of the spinal cord, outermost layer of the brain (cerebral cortex), and in several subcortical nuclei of the brain deep to the cerebral cortex.

Nervous system divisions

So nervous tissue, comprised of neurons and neuroglia, forms our nervous organs (e.g. the brain, nerves). These organs unite according to their common function, forming the evolutionary perfection that is our nervous system.

The nervous system (NS) is structurally broken down into two divisions;

  • Central nervous system (CNS) - consists of the brain and spinal cord
  • Peripheral nervous system (PNS) - gathers all neural tissue outside the CNS

Functionally, the PNS is further subdivided into two functional divisions;

  • Somatic nervous system (SNS) - informally described as the voluntary system
  • Autonomic nervous system (ANS) - described as the involuntary system.

Although divided structurally into central and peripheral parts, the nervous system divisions are actually interconnected with each other. Axon bundles pass impulses between the brain and spinal cord. These bundles within the CNS are called afferent and efferent neural pathways or tracts. Axons that extend from the CNS to connect with peripheral tissues belong to the PNS. Axons bundles within the PNS are called afferent and efferent peripheral nerves.

Central nervous system

The central nervous system (CNS) consists of the brain and spinal cord. These are found housed within the skull and vertebral column respectively.

The brain is made of four parts; cerebrum, diencephalon, cerebellum and brainstem. Together these parts process the incoming information from peripheral tissues and generate commands; telling the tissues how to respond and function. These commands tackle the most complex voluntary and involuntary human body functions, from breathing to thinking.

The spinal cord continues from the brainstem. It also has the ability to generate commands but for involuntary processes only, i.e. reflexes. However, its main function is to pass information between the CNS and periphery.

Peripheral nervous system

The PNS consists of 12 pairs of cranial nerves, 31 pairs of spinal nerves and a number of small neuronal clusters throughout the body called ganglia.
Peripheral nerves can be sensory (afferent), motor (efferent) or mixed (both). Depending on what structures they innervate, peripheral nerves can have the following modalities;

  • Special - innervating special senses (e.g. eye) and is found only in afferent fibers
  • General - supplying everything except special senses
  • Somatic - innervates the skin and skeletal muscles (e.g. biceps brachii)
  • Visceral - supplies internal organs.

Cranial nerves

Cranial Nerves are peripheral nerves that emerge from the cranial nerve nuclei of the brainstem and spinal cord. They innervate the head and neck. Cranial nerves are numbered one to twelve according to their order of exit through the skull fissures. Namely, they are: olfactory nerve (CN I), optic nerve (CN II), oculomotor nerve (CN III), trochlear nerve (CN IV), trigeminal nerve (CN V), abducens nerve (VI), facial nerve (VII), vestibulocochlear nerve (VIII), glossopharyngeal nerve (IX), vagus nerve (X), accessory nerve (XI), and hypoglossal nerve (XII). These nerves are motor (III, IV, VI, XI, and XII), sensory (I, II and VIII) or mixed (V, VII, IX, and X).

Spinal nerves

Spinal nerves emerge from the segments of the spinal cord. They are numbered according to their specific segment of origin. Hence, the 31 pairs of spinal nerves are divided into 8 cervical pairs, 12 thoracic pairs, 5 lumbar pairs, 5 sacral pairs, and 1 coccygeal spinal nerve. All spinal nerves are mixed, containing both sensory and motor fibers.

Spinal nerves innervate the entire body, with the exception of the head. They do so by either directly synapsing with their target organs or by interlacing with each other and forming plexuses. There are four major plexuses that supply the body regions;

  • Cervical plexus (C1-C4) - innervates the neck
  • Brachial plexus (C5-T1) - innervates the upper limb
  • Lumbar plexus (L1-L4) - innervates the lower abdominal wall, anterior hip and thigh
  • Sacral plexus (L4-S4) - innervates the pelvis and the lower limb

Ganglia

Ganglia (sing. ganglion) are clusters of neuronal cell bodies outside of the CNS, meaning that they are the PNS equivalents to subcortical nuclei of the CNS. Ganglia can be sensory or visceral motor (autonomic) and their distribution in the body is clearly defined.

Dorsal root ganglia are clusters of sensory nerve cell bodies located adjacent to the spinal cord, They are a component of the posterior root of a spinal nerve.

Autonomic ganglia are either sympathetic or parasympathetic. Sympathetic ganglia are found in the thorax and abdomen, grouped into paravertebral and prevertebral ganglia. Paravertebral ganglia lie on either side of vertebral column (para- means beside), comprising two ganglionic chains that extend from the base of the skull to the coccyx, called sympathetic trunks. Prevertebral ganglia (collateral ganglia, preaortic ganglia) are found anterior to the vertebral column (pre- means in front of), closer to their target organ. They are further grouped according to which branch of abdominal aorta they surround; celiac, aorticorenal, superior and inferior mesenteric ganglia.

Parasympathetic ganglia are found in the head and pelvis. Ganglia in the head are associated with relevant cranial nerves and are the ciliary, pterygopalatine, otic and submandibular ganglia. Pelvic ganglia lie close to the reproductive organs comprising autonomic plexuses for innervation of pelvic viscera, such as prostatic and uterovaginal plexuses.

Somatic nervous system

The somatic nervous system is the voluntary component of the peripheral nervous system. It consists of all the fibers within cranial and spinal nerves that enable us to perform voluntary body movements (efferent nerves) and feel sensation from the skin, muscles and joints (afferent nerves). Somatic sensation relates to touch, pressure, vibration, pain, temperature, stretch and position sense from these three types of structures.

Sensation from the glands, smooth and cardiac muscles is conveyed by the autonomic nerves.

Autonomic nervous system

The autonomic nervous system is the involuntary part of the peripheral nervous system. Further divided into the sympathetic (SANS), parasympathetic (PANS) systems, it is comprised exclusively of visceral motor fibers. Nerves from both these divisions innervate all involuntary structures of the body;

  • Cardiac muscle
  • Glandular cells
  • Smooth muscles present in the walls of the blood vessels and hollow organs.

Balanced functioning of these two systems plays a crucial role in maintaining homeostasis, meaning that the SANS and PANS do not oppose each other but rather, they complement each other. They do so by potentiating the activity of different organs under various circumstances; for example, the PSNS will stimulate higher intestine activity after food intake, while SANS will stimulate the heart to increase the output during exercise.

Autonomic nerves synapse within autonomic ganglia before reaching their target organ, thus all of them have presynaptic and postsynaptic parts. Presynaptic fibers originate from CNS and end by synapsing with neurons of the peripheral autonomic ganglia. Postsynaptic fibers are the axons of ganglion neurons, extending from the ganglion to peripheral tissues. In sympathetic nerves, the presynaptic fiber is short as the ganglia are located very close to the spinal cord, while the postsynaptic fiber is much longer in order to reach the target organ. In parasympathetic nerves it’s the opposite; the presynaptic fiber is longer than the postsynaptic.

Sympathetic nervous system

The sympathetic system (SANS) adjusts our bodies for situations of increased physical activity. Its actions are commonly described as the “fight-or-flight” response as it stimulates responses such as faster breathing, increased heart rate, elevated blood pressure, dilated pupils and redirection of blood flow from the skin, kidneys, stomach and intestines to the heart and muscles, where it’s needed.

Sympathetic nerve fibers have a thoracolumbar origin, meaning that they stem from the T1-L2/L3 spinal cord segments. They synapse with prevertebral and paravertebral ganglia, from which the postsynaptic fibers travel to supply the target viscera.

Parasympathetic nervous system

The parasympathetic nervous system (PSNS) adjusts our bodies for energy conservation, activating “rest and digest” or “feed and breed” activities. The nerves of the PSNS slow down the actions of cardiovascular system, divert blood away from muscles and increase peristalsis and gland secretion.

Parasympathetic fibers have craniosacral outflow, meaning that they originate from the brainstem (cranio-) and S2-S4 spinal cord segments (-sacral). These fibers travel to thoracic and abdominal organs, where they synapse in ganglia located close to or within the target organ.

Enteric nervous system

Enteric nervous system comprises the SANS and PANS fibers that regulate the activity of the gastrointestinal tract. This system is made of parasympathetic fibers of the vagus nerve (CN X) and sympathetic fibers of the thoracic splanchnic nerves. These fibers form two plexuses within the wall of the intestinal tube which are responsible for modulating intestinal peristalsis, i.e. propagation of consumed food from esophagus to rectum;

  • Submucosal plexus (of Meissner) found in the submucosa of the intestines and contains only parasympathetic fibers
  • Myenteric plexus (of Auerbach) located in the muscularis externa of intestines, containing both sympathetic and parasympathetic nerve fibers.

Related Solutions

Explain the nervous system
The Nervous system is a specialized system in animals. This system aids in the coordination of voluntary and involuntary actions, reflex actions in our body. 
Why does blocking the parasympathetic nervous system stimulates the sympathetic nervous system?
Why does blocking the parasympathetic nervous system stimulates the sympathetic nervous system?
Autonomic nervous system : Is a component of the peripheral nervous system, it regulates involuntary physiologic...
Autonomic nervous system : Is a component of the peripheral nervous system, it regulates involuntary physiologic processes including heart rate, blood pressure, respiration, digestion. This system works automatically without a person’s conscious effort. Disorders of the autonomic nervous system can affect any body part or process. Autonomic disorders may be reversible or progressive. Apart of the autonomic nervous system there are three anatomically distinct divisions: sympathetic, parasympathetic, and enteric. Somatic nervous system : Contains both afferent nerves (which send information...
Biological Basis of Behavior Nervous system 1) why is it important to study the nervous system...
Biological Basis of Behavior Nervous system 1) why is it important to study the nervous system in an evolutionary context? 2)Describe functions of the midbrain and hindbrain ?
Muscles are controlled by the nervous system. Muscles also send information back to the nervous system....
Muscles are controlled by the nervous system. Muscles also send information back to the nervous system. i. Describe one piece of information that muscles send back to the nervous system and a specialized receptor cell that detects and conveys that information. (1 point) Many songbirds are sexually dimorphic: only male songbirds sing. The brains of male and female songbirds are different, too: the motor cortex of males is twice as big as the motor cortex in females. However, if you...
Describe the differences between the functions of the central nervous system and peripheral nervous system (5...
Describe the differences between the functions of the central nervous system and peripheral nervous system (5 Points) List and describe the primary functions of the 4 major lobes of the cerebral cortex
nervous system could be described as cns and pns or somatic and autom atic nervous system....
nervous system could be described as cns and pns or somatic and autom atic nervous system. explain the terms and major organs that make these systems
how does the autonomic nervous system control digestion? where is the enteric nervous system?
how does the autonomic nervous system control digestion? where is the enteric nervous system?
Nervous System: Match each item to the correct statement below. homeostasis somatic system nervous system sympathetic...
Nervous System: Match each item to the correct statement below. homeostasis somatic system nervous system sympathetic nervous system endocrine system negative feedback system excretory system parasympathetic nervous system positive feedback system autonomic system way in which the body works to reverse a change and bring about normalcy ________ way in which the body works to increase changes ________ division of the peripheral nervous system that controls involuntary secretions and smooth muscles ______ division of the autonomic nervous system typically activated...
Why would the sympathetic nervous system cause the release of glucagon, while the parasympathetic nervous system...
Why would the sympathetic nervous system cause the release of glucagon, while the parasympathetic nervous system cause the release of insulin?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT