Question

In: Physics

Consider an X-ray beam of wavelength 0.1 nm and a gamma ray beam of wavelength 0.00188...

Consider an X-ray beam of wavelength 0.1 nm and a gamma ray beam of wavelength 0.00188 nm. if each is scattered by an angle of 90 degrees by a free electron, what is the compton shift in the wavelength of the rays? in each case also determine the kinetic energy transferred to the recoiling electron and how much of the incident energy in the rays is lost.

Solutions

Expert Solution


Related Solutions

An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by...
An photon with a wavelength in the X-ray region of 0.69 nm undergoes Compton scattering by colliding with a free electron. 1) Assume the photon just barely grases the electron, so that the deflect angle, θ, can be considered zero. 1)What is the wavelength of the outgoing photon after the collision? λ' = 2)What the energy of the outgoing photon? Eγ = 3)Now assume the photon deflects off at a small angle of 49o. What is the wavelength of the...
An X-ray photon with a wavelength of 0.120 nm scatters from a free electron at rest....
An X-ray photon with a wavelength of 0.120 nm scatters from a free electron at rest. The scattered photon moves at an angle of 105° relative to its incident direction. (a) Find the initial momentum of the photon. kg·m/s (b) Find the final momentum of the photon. kg·m/s
An X-ray photon with a wavelength of 0.979 nm strikes a surface. The emitted electron has...
An X-ray photon with a wavelength of 0.979 nm strikes a surface. The emitted electron has a kinetic energy of 984 eV. What is the binding energy of the electron in kJ/mol? [Note that KE = 12mv2 and 1 electron volt (eV) = 1.602×10−19J.]
An X-ray photon of wavelength 0.958 nm strikes a surface. The emitted electron has a kinetic...
An X-ray photon of wavelength 0.958 nm strikes a surface. The emitted electron has a kinetic energy of 978 eV . What is the binding energy of the electron in kJ mol−1? [KE = 12mv2; 1 electron volt (eV) = 1.602×10−19J]
1. An x-ray photon of initial wavelength (λ 0) = 0.097 nm is scattered off an...
1. An x-ray photon of initial wavelength (λ 0) = 0.097 nm is scattered off an electron (initially at rest). If the photon is backscattered (scattering angle = 180°), what is the resulting wavelength of the scattered photon? Give your answer in nm, but enter only the numerical part in the box. 2. An x-ray photon of initial wavelength (λ 0) = 0.093 nm is scattered off an electron (initially at rest). If the photon is backscattered (scattering angle =...
A light ray of wavelength 589 nm is incident at an angle θ on the top...
A light ray of wavelength 589 nm is incident at an angle θ on the top surface of a block of crown glass surrounded by air, as shown in the figure below. (The index of refraction of crown glass is 1.52.) (a) Find the maximum value of θ for which the refracted ray will undergo total internal reflection at the left vertical face of the block. ° (b) Repeat the calculation for the case in which the crown glass block...
A beam of wavelength 310 nm from a laser is incident on a metal with work...
A beam of wavelength 310 nm from a laser is incident on a metal with work function 2.7 eV. The power of the laser is 0.15 W. (a) Does the metal emit photoelectrons? Why? (b) What is the range of photoelectron kinetic energies emitted by metal? (c) What is the range of de Broglie wavelengths of these photoelectons? (d) How does result for part (b) change if the laser power is doubled to 0.30 W? Thank you.
A vertically polarized laser beam (wavelength 400 nm) passes through a polarizer (60° from vertical) and two slits that are 0.1 mm apart.
A vertically polarized laser beam (wavelength 400 nm) passes through a polarizer (60° from vertical) and two slits that are 0.1 mm apart. Each slit is 800 nm wide. The light hits a screen 1 m away.a. What is the frequency of the laser light?b. What fraction of light intensity is transmitted through the polarizer?c. At what angle does the second-order maximum occur?d. One slit is blocked. What is the width of the central maximum on the screen?
Herb wants to know the wavelength of maximum excitation andemissionto the nearest 0.1 nm for a...
Herb wants to know the wavelength of maximum excitation andemissionto the nearest 0.1 nm for a number of dyes and also wants to get the lowest possible detection limit for each dye (i.e. he wants to maximize signal).  You want to build the most sensitive spectrometer possible for a moderate cost. How would you design a system to meet Herb’s needs.  Be specific about the components.
A laser beam with vacuum wavelength 582 nm is incident from air onto a block of...
A laser beam with vacuum wavelength 582 nm is incident from air onto a block of Lucite as shown in the figure below. The line of sight of the photograph is perpendicular to the plane in which the light moves. Take θ1 to be 60°. Recall that the index of refraction of air is 1 and Lucite is 1.50. (a) Find the speed of the light in Lucite.. m/s (b) Find the frequency of the light in Lucite.. Hz (c)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT