In: Statistics and Probability
The random variable X follows a Poisson process with the given mean. Assuming
mu equals 6 commaμ=6,
compute the following.
(a) P(66)
(b) P(Xless than<66)
(c) P(Xgreater than or equals≥66)
(d) P(55less than or equals≤Xless than or equals≤77)
SOLUTION:
From given data,
The random variable X follows a Poisson process with the given mean. Assuming mu equals 6 comma compute the following. Please show work.
(a) P(6)
(b) P(X less than 6)
(c) P(X greater than or equals 6)
(d) P(5 less than or equals X less than or equals 7)
X Poisson ( )
P(X) = e- * x / x !
= 6
P(X) = e-6 * 6x / x !
(a) P(6)
x = 6
P(6) = e-6 * 66 / 6 !
P(6) = 0.0024787* 46656/ 720
P(6) = 115.6486615 / 720
P(6) = 0.160623
(b) P(X less than 6)
P(X < 6) = P(0)+P(1)+P(2)+P(3)+P(4)+P(5)
P(X < 6) = e-6 * 60 / 0 !+e-6 * 61 /1 !+e-6 * 62 / 2 !+e-6 * 63 / 3 !+e-6 * 64 / 4 !+e-6 * 65 / 5 !
P(X < 6) = e-6+ e-6 * 6 /1 +e-6 * 36 / 2+e-6 * 216 / 6+e-6 * 1296 / 24+e-6 * 7776/ 120
P(X < 6) = 0.0024787+ 0.0148722+0.0446166+0.0892332+0.1338498+0.16061976
P(X < 6) = 0.445670
(c) P(X greater than or equals 6)
P(X > 6 ) = 1 - P(X < 6)
P(X > 6 ) = 1 - 0.445670
P(X > 6 ) = 0.55433
(d) P(5 less than or equals X less than or equals 7)
P(5 < X < 7) = P(5)+P(6)+P(7)
P(5 < X < 7) = e-6 * 65 / 5 !+e-6 * 66 / 6 !+e-6 * 67 / 7!
P(5 < X < 7) = e-6 * 7776/ 120+e-6 * 46656 / 720+e-6 * 279936 / 5040
P(5 < X < 7) = 0.16061976+0.16061976+0.13767408
P(5 < X < 7) = 0.458913