Question

In: Physics

Planet X has a moon that has a very elliptical orbit. Its furthest point from the...

Planet X has a moon that has a very elliptical orbit. Its furthest point from the planet X is 4 × 10^8 m and its closest point is 3 × 10^8 m. If its speed at the furthest point is 700 m/s, what is its speed at its closest point?

The mass of planet X is 2.68 X 10^24 kg and the radius of planet X is 4079 km. (please show work and drawing)

Solutions

Expert Solution

For any doubt please comment and please give an up vote. Thank you


Related Solutions

Consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee...
Consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee of its orbit it is 500 km above the earth surface at the high point or apogee it is 5000km above the earth surface A) what is the period of the spacecraft orbit!? B) using conservation of angular momentum find the ratio of the spacecraft speed at perigee to its speed apogee!? C) using conservation of energy find the speed at perigee and the...
Consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee,...
Consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee, of its orbit, it is 300km above the earth's surface; at the high point, or apogee, it is 2500km above the earth's surface. A) What is the period of the spacecraft's orbit? B) Using conservation of angular momentum, find the ratio of the spacecraft's speed at perigee to its speed at apogee. C) Using conservation of energy, find the speed at perigee and the...
consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee,...
consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee, of its orbit, it is 300 km above the earth's surface; at the high point or apogee, it is 2500 km above the earth's surface. Part A: find ratio of the spacecraft's speed at perigee to its speed at apogee? (Vperigee / Vapogee) = ..... Part B: find the speed at the apogee? V apogee = ........ m/s Part C: find speed at perigee?...
At the perihelion of its orbit a planet is 4.45x1012 m from a star. The maximum...
At the perihelion of its orbit a planet is 4.45x1012 m from a star. The maximum distance between the planet and the star is 7.35x1012 m. The mass of the star is 2.99x1030 kg. What is the period of the planet? (1 year = 3.156x107 seconds)
The path of a very small satellite S in an elliptical orbit around a massive spherical...
The path of a very small satellite S in an elliptical orbit around a massive spherical planet P is shown in the figure. The distance from 3 to 4 is the same as from 4 to 5, 9 to 10, and 10 to 11. True False Greater than Less than Equal to  The KE of S varies with position. True False Greater than Less than Equal to  The speed at S at position '8' is ... at '2'. True False Greater than...
A satellite is in an elliptical orbit around the earth. The distance from the satellite to...
A satellite is in an elliptical orbit around the earth. The distance from the satellite to the center of the earth ranges from 7.2 Mm at perigee (where the speed is 8.0 km/s) to 9.9 Mm at apogee. 1. Assume the initial conditions are x = 0, y = 7.2 × 106 m, vx = 8.0×103 m/s, and vy = 0. Use python program to print its speed, distance from the earth, kinetic energy, potential energy, and total mechanical energy...
The motion of Halley’s comet and its motion. Halley’s comet travels in an elliptical orbit of...
The motion of Halley’s comet and its motion. Halley’s comet travels in an elliptical orbit of eccentricity ϵ = 0.97 around the Sun. At perihelion (closest approach), Halley’s comet is observed to be approximately 0.59 AU from the Sun. At aphelion the distance is about 35.08 AU, the semi-major axis of the elliptical orbit is 17.83 AU, and the orbital period is about 75.3 Earth years. 1) Since Earth has an essentially circular orbit that is 1 AU from the...
The motion of Halley’s comet and its motion. Halley’s comet travels in an elliptical orbit of...
The motion of Halley’s comet and its motion. Halley’s comet travels in an elliptical orbit of eccentricity ϵ = 0.97 around the Sun. At perihelion (closest approach), Halley’s comet is observed to be approximately 0.59 AU from the Sun. At aphelion the distance is about 35.08 AU, the semi-major axis of the elliptical orbit is 17.83 AU, and the orbital period is about 75.3 Earth years. 1) Since Earth has an essentially circular orbit that is 1 AU from the...
A comet moves in an elliptical orbit around the sun. As the comet moves from aphelion...
A comet moves in an elliptical orbit around the sun. As the comet moves from aphelion (the point on the orbit farthest from the sun) to perihelion (the point on the orbit closest to the sun), which of the following results is true? Speed of the comet Angular momentum of the comet/sun system Gravitational potential energy of the comet/sun system A Increases Increases Decreases B Increases Constant Decreases C Decreases Decreases Increases D Increases Increases Constant E Constant Constant Constant
Draw a free body diagram for a satellite in an elliptical orbit showing why its speed...
Draw a free body diagram for a satellite in an elliptical orbit showing why its speed increases as it approaches its parent body and decreases as it moves away
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT