In: Physics
consider a spacecraft in an elliptical orbit around the earth. At the low point, or perigee, of its orbit, it is 300 km above the earth's surface; at the high point or apogee, it is 2500 km above the earth's surface.
Part A: find ratio of the spacecraft's speed at perigee to its speed at apogee?
(Vperigee / Vapogee) = .....
Part B: find the speed at the apogee?
V apogee = ........ m/s
Part C: find speed at perigee?
V perigee = ..... m/s
(I only have 1 try left in mastering please help me thanks)
Part A : The ratio of spacecraft's speed at perigee to its speed at apogee which will be given by -
(Vperigee / Vapogee) = (Ra + RE) / (Rp + RE)
(Vperigee / Vapogee) = [(2500 km) + (6380 km)] / [(300 km) + (6380 km)]
(Vperigee / Vapogee) = [(8880 km) / (6680 km)]
(Vperigee / Vapogee) = 1.32
Part B : The speed at an apogee which will be given by -
Vapogee = [2 G mE (Ra + RE) / (Ra + Rp + 2 RE)] / (Rp + RE)
Vapogee = {[(2) (6.67 x 10-11 N.m2/kg2) (5.98 x 1024 kg) (8880 x 103 m)] / [(2500 x 103 m) + (300 x 103 m) + (12760 x 103 m)]} / (6680 x 103 m)
Vapogee = [(4.552 x 1014 N.m2/kg) / (6680 x 103 m)]
Vapogee = 6.814 x 107 m2/s2
Vapogee = 8255 m/s
Part C : The speed at an perigee which will be given by -
Vperigee = [2 G mE (Rp + RE) / (Ra + Rp + 2 RE)] / (Ra + RE)
Vperigee = {[(2) (6.67 x 10-11 N.m2/kg2) (5.98 x 1024 kg) (6680 x 103 m)] / [(2500 x 103 m) + (300 x 103 m) + (12760 x 103 m)]} / (8880 x 103 m)
Vperigee = [(3.424 x 1014 N.m2/kg) / (8880 x 103 m)]
Vperigee = 3.855 x 107 m2/s2
Vperigee = 6209.5 m/s