Question

In: Physics

An electron is trapped in a square well of unknown width, L. It starts in unknown...

An electron is trapped in a square well of unknown width, L. It starts in unknown energy level, n. When it falls to level n-1 it emits a photon of wavelength λphoton = 2280 nm. When it falls from n-1 to n-2, it emits a photon of wavelength λphoton = 3192 nm.

1) What is the energy of the n to n-1 photon in eV?

En to n-1 =

2) What is the energy of the n-1 to n-2 photon in eV?

En-1 to n-2 =

3) What is the initial value of n?

ninitial =

4) What is the width, L, of the well in nm?

L =

5) What is the longest wavelength of light, λlongest, the well can absorb in nm?

λlongest=

Solutions

Expert Solution


Related Solutions

A free electron is trapped in an infinite well of width L. a- Give the Schrödinger...
A free electron is trapped in an infinite well of width L. a- Give the Schrödinger equation which describes the movement of the electron. b- Show that Ψ (?) = ???? (nπx/L ) is a solution of this equation c- Show that ? = √2/L d- What is the average position of the electron e- What is the most likely position if n = 3 f- What is the average kinetic energy for n = 3 g- What is the...
An electron is trapped in an infinitely deep one-dimensional well of width 0.288 nm. Initially the...
An electron is trapped in an infinitely deep one-dimensional well of width 0.288 nm. Initially the electron occupies the n = 4 state. (a) Suppose the electron jumps to the ground state with the accompanying emission of a photon. What is the energy of the photon? eV (b) Find the energies of other photons that might be emitted if the electron takes other paths between the n = 4 state and the ground state. 4 → 3 in eV 4...
A particle in the infinite square well (width a) starts out being equally likely to be...
A particle in the infinite square well (width a) starts out being equally likely to be found in the first and last third of the well and zero in the middle third. What is the initial (t=0) wave function? Find A and graph the initial wave function. What is the expectation value of x? Show your calculation for the expectation value of x, but then say why you could have just written down the answer. Will you ever find the...
An electron is bound to a finite potential well. (a) If the width of the well...
An electron is bound to a finite potential well. (a) If the width of the well is 4 a.u., determine numerically the minimum depth (in a.u.) such that there are four even states. Give the energies of all states including odd ones to at least 3 digits. (b) Repeat the calculation, but now keep the depth of the well at 1 a.u., determine the minimum width (in a.u.)
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.35 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 4 state? nm (b) What is the width of the square well? nm
Calculate all of the energy levels for an electron in the finite potential well of width...
Calculate all of the energy levels for an electron in the finite potential well of width a) L = 10 Å, b) L = 50 Å, c) L = 100 Å and L = 1000 Å using the actual mass of an electron for the conduction band of the AlGaAs/GaAs/AlGaAs quantum well. Repeat problem using a) the effective mass of an electron in GaAs (electron effective mass meff = 0.067*mass of an electron)
Consider a particle of mass ? in an infinite square well of width ?. Its wave...
Consider a particle of mass ? in an infinite square well of width ?. Its wave function at time t = 0 is a superposition of the third and fourth energy eigenstates as follows: ? (?, 0) = ? 3i?­3(?)+ ?­4(?) (Find A by normalizing ?(?, 0).) (Find ?(?, ?).) Find energy expectation value, <E> at time ? = 0. You should not need to evaluate any integrals. Is <E> time dependent? Use qualitative reasoning to justify. If you measure...
Estimate the ground state for an electron confined to a potential well of width 0.200 nm...
Estimate the ground state for an electron confined to a potential well of width 0.200 nm and height 100 eV. What is the effective well width of the (infinite) well? (Hint: Consider an iterative approach to approximate the penetration depth ? by initially assuming E?V).
A system of N identical, non-interacting particles are placed in a finite square well of width...
A system of N identical, non-interacting particles are placed in a finite square well of width L and depth V. The relationship between V and L are such that only 2 bound states exist. What is this relationship? Hint: What is the requirement on E for a bound state? For these two bound states, what is the expected energy of the system as a function of temperature? The result only applies when T is low enough so that the probability...
A particle of mass m is confined to a finite potential energy well of width L....
A particle of mass m is confined to a finite potential energy well of width L. The equations describing the potential are U=U0 x<0 U=0 0 < x < L U=U0 x > L Take a solution to the time-independent Schrodinger equation of energy E (E < U0) to have the form A exp(-k1 x) + B exp(k1 x) x < 0 C cos(-k2 x) + D sin(k2 x) 0 < x < L F exp(-k3 x) + G exp(k3...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT