In: Advanced Math
0 mod 35 = 〈0 mod 5, 0 mod 7〉 12 mod 35 = 〈2 mod 5, 5 mod 7〉 24
mod 35 = 〈4 mod 5, 3 mod 7〉
1 mod 35 = 〈1 mod 5, 1 mod 7〉 13 mod 35 = 〈3 mod 5, 6 mod 7〉 25 mod
35 = 〈0 mod 5, 4 mod 7〉
2 mod 35 = 〈2 mod 5, 2 mod 7〉 14 mod 35 = 〈4 mod 5, 0 mod 7〉 26 mod
35 = 〈1 mod 5, 5 mod 7〉
3 mod 35 = 〈3 mod 5, 3 mod 7〉 15 mod 35 = 〈0 mod 5, 1 mod 7〉 27 mod
35 = 〈2 mod 5, 6 mod 7〉
4 mod 35 = 〈4 mod 5, 4 mod 7〉 16 mod 35 = 〈1 mod 5, 2 mod 7〉 28 mod
35 = 〈3 mod 5, 0 mod 7〉
5 mod 35 = 〈0 mod 5, 5 mod 7〉 17 mod 35 = 〈2 mod 5, 3 mod 7〉 29 mod
35 = 〈4 mod 5, 1 mod 7〉
6 mod 35 = 〈1 mod 5, 6 mod 7〉 18 mod 35 = 〈3 mod 5, 4 mod 7〉 30 mod
35 = 〈0 mod 5, 2 mod 7〉
7 mod 35 = 〈2 mod 5, 0 mod 7〉 19 mod 35 = 〈4 mod 5, 5 mod 7〉 31 mod
35 = 〈1 mod 5, 3 mod 7〉
8 mod 35 = 〈3 mod 5, 1 mod 7〉 20 mod 35 = 〈0 mod 5, 6 mod 7〉 32 mod
35 = 〈2 mod 5, 4 mod 7〉
9 mod 35 = 〈4 mod 5, 2 mod 7〉 21 mod 35 = 〈1 mod 5, 0 mod 7〉 33 mod
35 = 〈3 mod 5, 5 mod 7〉
10 mod 35 = 〈0 mod 5, 3 mod 7〉 22 mod 35 = 〈2 mod 5, 1 mod 7〉 34
mod 35 = 〈4 mod 5, 6 mod 7〉
11 mod 35 = 〈1 mod 5, 4 mod 7〉 23 mod 35 = 〈3 mod 5, 2 mod 7〉
2.2 Which of the numbers (mod 35) are relatively prime to 35? List them in CRT (Chinese Remainder Theorem) notation.
2.3. For each number x in the answer to #2.2, compute x 2 (mod 35).
2.4 Verify that each square has four square roots (mod 35).
2.5 1 is a square (mod 35). Two of its square roots are 1 and (‐1 ≡ 34 (mod 35)). What are the other two?
Using CRT the solution to corresponding simultaneous congruences have solutions 1, 6, -6=29, -1=34 respectively