Question

In: Advanced Math

0 mod 35 = 〈0 mod 5, 0 mod 7〉 12 mod 35 = 〈2 mod...

0 mod 35 = 〈0 mod 5, 0 mod 7〉 12 mod 35 = 〈2 mod 5, 5 mod 7〉 24 mod 35 = 〈4 mod 5, 3 mod 7〉
1 mod 35 = 〈1 mod 5, 1 mod 7〉 13 mod 35 = 〈3 mod 5, 6 mod 7〉 25 mod 35 = 〈0 mod 5, 4 mod 7〉
2 mod 35 = 〈2 mod 5, 2 mod 7〉 14 mod 35 = 〈4 mod 5, 0 mod 7〉 26 mod 35 = 〈1 mod 5, 5 mod 7〉
3 mod 35 = 〈3 mod 5, 3 mod 7〉 15 mod 35 = 〈0 mod 5, 1 mod 7〉 27 mod 35 = 〈2 mod 5, 6 mod 7〉
4 mod 35 = 〈4 mod 5, 4 mod 7〉 16 mod 35 = 〈1 mod 5, 2 mod 7〉 28 mod 35 = 〈3 mod 5, 0 mod 7〉
5 mod 35 = 〈0 mod 5, 5 mod 7〉 17 mod 35 = 〈2 mod 5, 3 mod 7〉 29 mod 35 = 〈4 mod 5, 1 mod 7〉
6 mod 35 = 〈1 mod 5, 6 mod 7〉 18 mod 35 = 〈3 mod 5, 4 mod 7〉 30 mod 35 = 〈0 mod 5, 2 mod 7〉
7 mod 35 = 〈2 mod 5, 0 mod 7〉 19 mod 35 = 〈4 mod 5, 5 mod 7〉 31 mod 35 = 〈1 mod 5, 3 mod 7〉
8 mod 35 = 〈3 mod 5, 1 mod 7〉 20 mod 35 = 〈0 mod 5, 6 mod 7〉 32 mod 35 = 〈2 mod 5, 4 mod 7〉
9 mod 35 = 〈4 mod 5, 2 mod 7〉 21 mod 35 = 〈1 mod 5, 0 mod 7〉 33 mod 35 = 〈3 mod 5, 5 mod 7〉
10 mod 35 = 〈0 mod 5, 3 mod 7〉 22 mod 35 = 〈2 mod 5, 1 mod 7〉 34 mod 35 = 〈4 mod 5, 6 mod 7〉
11 mod 35 = 〈1 mod 5, 4 mod 7〉 23 mod 35 = 〈3 mod 5, 2 mod 7〉

2.2 Which of the numbers (mod 35) are relatively prime to 35? List them in CRT (Chinese Remainder Theorem) notation.

2.3. For each number x in the answer to #2.2, compute x 2 (mod 35).

2.4 Verify that each square has four square roots (mod 35).

2.5 1 is a square (mod 35). Two of its square roots are 1 and (‐1 ≡ 34 (mod 35)). What are the other two?

Solutions

Expert Solution

Using CRT the solution to corresponding simultaneous congruences have solutions 1, 6, -6=29, -1=34 respectively


Related Solutions

(9) Diagonalizing 4 0 1 -7 -5 5. -12 -6 7
(9) Diagonalizing 4 0 1 -7 -5 5. -12 -6 7
DATA 3 8 2 15 2 2 0 0 4 5 2 7 0 1 5...
DATA 3 8 2 15 2 2 0 0 4 5 2 7 0 1 5 3 0 2 5 4 1 6 9 5 3 1 2 10 6 1 1 2 1 19 6 6 6 7 0 4 1 1 1 0 1 9 2 2 2 1 16 10 10 5 2 3 1 4 4 4 3 6 2 8 5 2 7 1 6 4 0 3 1 1 1 Background: A group of...
Compute the following: (a) 13^2018 (mod 12) (b) 8^11111 (mod 9) (c) 7^256 (mod 11) (d)...
Compute the following: (a) 13^2018 (mod 12) (b) 8^11111 (mod 9) (c) 7^256 (mod 11) (d) 3^160 (mod 23)
f ''(x) = −2 + 24x − 12x^2, f(0) = 7, f '(0) = 12
f ''(x) = −2 + 24x − 12x^2, f(0) = 7, f '(0) = 12
Find Eigenvalues and eigenvectors 6 -2 2 2    5 0 -2    0 7
Find Eigenvalues and eigenvectors 6 -2 2 2    5 0 -2    0 7
A= 1 0 -7 7 0 1 0 0 2 -2 10 -7 2 -2 2...
A= 1 0 -7 7 0 1 0 0 2 -2 10 -7 2 -2 2 1 Diagonalize the matrix above. That is, find matrix D and a nonsingular matrix P such that A = PDP-1 . Use the representation to find the entries of An as a function of n.
Given the following data (2, 5, 1, 0, 5, 0, 7, 2, 3) Calculate the 3rd...
Given the following data (2, 5, 1, 0, 5, 0, 7, 2, 3) Calculate the 3rd quartile from your "data". What's the probability that a randomly selected number from your data is even? Consider the events A = "a randomly selected number from your data is even" and B = "a randomly selected number from your data is above the 3rd quartile". Are these events disjoint, independent, neither, or both? Show your work.
3.11. (a) Let n be any integer such that n is congruent to 0 (mod 7)....
3.11. (a) Let n be any integer such that n is congruent to 0 (mod 7). For any positive integer k, what is the remainder when n^k is divided by 7? (b) Let n be any integer such that n is congruent to 1 (mod 7). For any positive integer k, what is the remainder when n^k is divided by 7? (c) Let n be any integer such that n is congruent to 2 (mod 7). For any nonnegative integer...
6 5 4 5 0 0 13 48 6 1 0 7 2 0 1 1...
6 5 4 5 0 0 13 48 6 1 0 7 2 0 1 1 0 2 11 5 11 27 4 0 6 Create Standard Deviation Chart (Normal Distribution Curve)
0 0 2 0 5 3 1 12 0 0 0 1 6 0 1 1...
0 0 2 0 5 3 1 12 0 0 0 1 6 0 1 1 2 8 1 3 1 6 2 4 0 16 17 0 8 0 3 0 0 1 2 5 2 0 2 1 5 0 7 0 1 0 0 1 0 0 3 1 9 4 1 3 0 1 1 1 0 7 1 9 2 0 1 1 1 1 7 2 7 1 2 =============================== (a) What type of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT