In: Statistics and Probability
1. Explain an example of the Breusch-Pagan test.
let us consider the data
MPG | HORSE POWER |
43.1 | 48 |
19.9 | 110 |
19.2 | 105 |
17.7 | 165 |
18.1 | 139 |
20.3 | 103 |
21.5 | 115 |
16.9 | 155 |
15.5 | 142 |
18.5 | 150 |
27.2 | 71 |
41.5 | 76 |
46.6 | 65 |
23.7 | 100 |
27.2 | 84 |
39.1 | 58 |
28 | 88 |
24 | 92 |
20.2 | 139 |
20.5 | 95 |
28 | 90 |
34.7 | 63 |
36.1 | 66 |
35.7 | 80 |
20.2 | 85 |
23.9 | 90 |
29.9 | 65 |
30.4 | 67 |
36 | 74 |
22.6 | 110 |
36.4 | 67 |
27.5 | 95 |
33.7 | 75 |
44.6 | 67 |
32.9 | 100 |
38 | 67 |
24.2 | 120 |
38.1 | 60 |
39.4 | 70 |
25.4 | 116 |
31.3 | 75 |
34.1 | 68 |
34 | 88 |
31 | 82 |
27.4 | 80 |
22.3 | 88 |
28 | 79 |
17.6 | 85 |
34.4 | 65 |
20.6 | 105 |
using excel>data>data analysis>Rehression
we have
SUMMARY OUTPUT | ||||||
Regression Statistics | ||||||
Multiple R | 0.788177 | |||||
R Square | 0.621224 | |||||
Adjusted R Square | 0.613333 | |||||
Standard Error | 5.081207 | |||||
Observations | 50 | |||||
ANOVA | ||||||
df | SS | MS | F | Significance F | ||
Regression | 1 | 2032.546 | 2032.546 | 78.72388 | 1.09E-11 | |
Residual | 48 | 1239.296 | 25.81867 | |||
Total | 49 | 3271.842 | ||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
Intercept | 50.00521 | 2.523506 | 19.81577 | 9.42E-25 | 44.93136 | 55.07905 |
HORSE POWER | -0.23627 | 0.02663 | -8.87265 | 1.09E-11 | -0.28982 |
-0.18273 |
the vakue of R2 = 0.6212
n = 50
let us consider the null and alternative hypothesis is
Ho:there is homoskedicity present between the MPG and Horsepower
Ha::there is no homoskedicity present between the MPG and Horsepower
using Breuch Pegan test
= 50*0.6212 = 31.06
the tabulated value of at 0.05 with 49 df is 66.34
since 31.06 < 66.34 so we do not reject Ho and conclude that there is homoskedicity present between the MPG and Horsepower