In: Statistics and Probability
1. Explain an example of the Breusch-Pagan test.
let us consider the data
| MPG | HORSE POWER |
| 43.1 | 48 |
| 19.9 | 110 |
| 19.2 | 105 |
| 17.7 | 165 |
| 18.1 | 139 |
| 20.3 | 103 |
| 21.5 | 115 |
| 16.9 | 155 |
| 15.5 | 142 |
| 18.5 | 150 |
| 27.2 | 71 |
| 41.5 | 76 |
| 46.6 | 65 |
| 23.7 | 100 |
| 27.2 | 84 |
| 39.1 | 58 |
| 28 | 88 |
| 24 | 92 |
| 20.2 | 139 |
| 20.5 | 95 |
| 28 | 90 |
| 34.7 | 63 |
| 36.1 | 66 |
| 35.7 | 80 |
| 20.2 | 85 |
| 23.9 | 90 |
| 29.9 | 65 |
| 30.4 | 67 |
| 36 | 74 |
| 22.6 | 110 |
| 36.4 | 67 |
| 27.5 | 95 |
| 33.7 | 75 |
| 44.6 | 67 |
| 32.9 | 100 |
| 38 | 67 |
| 24.2 | 120 |
| 38.1 | 60 |
| 39.4 | 70 |
| 25.4 | 116 |
| 31.3 | 75 |
| 34.1 | 68 |
| 34 | 88 |
| 31 | 82 |
| 27.4 | 80 |
| 22.3 | 88 |
| 28 | 79 |
| 17.6 | 85 |
| 34.4 | 65 |
| 20.6 | 105 |
using excel>data>data analysis>Rehression
we have
| SUMMARY OUTPUT | ||||||
| Regression Statistics | ||||||
| Multiple R | 0.788177 | |||||
| R Square | 0.621224 | |||||
| Adjusted R Square | 0.613333 | |||||
| Standard Error | 5.081207 | |||||
| Observations | 50 | |||||
| ANOVA | ||||||
| df | SS | MS | F | Significance F | ||
| Regression | 1 | 2032.546 | 2032.546 | 78.72388 | 1.09E-11 | |
| Residual | 48 | 1239.296 | 25.81867 | |||
| Total | 49 | 3271.842 | ||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |
| Intercept | 50.00521 | 2.523506 | 19.81577 | 9.42E-25 | 44.93136 | 55.07905 |
| HORSE POWER | -0.23627 | 0.02663 | -8.87265 | 1.09E-11 | -0.28982 |
-0.18273 |
the vakue of R2 = 0.6212
n = 50
let us consider the null and alternative hypothesis is
Ho:there is homoskedicity present between the MPG and Horsepower
Ha::there is no homoskedicity present between the MPG and Horsepower
using Breuch Pegan test
= 50*0.6212 = 31.06
the tabulated value of
at 0.05 with 49 df is 66.34
since 31.06 < 66.34 so we do not reject Ho and conclude that there is homoskedicity present between the MPG and Horsepower