In: Statistics and Probability
Let X be a random variable with mean 11 and variance 9. Using Tchebysheff's theorem,find
(a) a lower bound for \( P(6 < X < 16) \)
(b) the value of C such that \( P(|X-11|\geq C)\leq 0.09 \)
Solution
Let X be random variable with \( E(X)=11\hspace{2mm},V(X)=9 \)
(a) a lower bound for \( P(6 < X < 16) \)
Tchebysheff's theorem :
\( \implies P(E(X)-k\delta< X< k\delta+E(X))\geq 1-\frac{1}{k^2} \)
since \( E(X)-k\delta=6\implies k=(11-6)\times \frac{1}{3}=\frac{5}{3} \)
Then \( P(6 < X < 16)\geq 1-\frac{9}{25}=\frac{16}{25} \)
Therefore. Lower bound is \( \frac{16}{25} \)
(b) Find the value C such that
\( \implies P(|X-11|\geq C)\leq 0.09 \)
By chebysheff's theorem \( P(|X-11|\geq C)\leq \frac{V(X)}{C^2} \)
then \( \frac{V(X)}{C^2}=0.09\implies C^2=\frac{V(X)}{0.09}\implies C=10 \)
Therefore.\( C=10 \)
Therefore.
a). Lower bound is \( \frac{16}{25} \)
b). \( C=10 \)