Question

In: Physics

A spring-loaded toy gun is used to shoot a ball straight up in the air. (Figure...

A spring-loaded toy gun is used to shoot a ball straight up in the air. (Figure 1) The ball reaches a maximum height H, measured from the equilibrium position of the spring.The same ball is shot straight up a second time from the same gun, but this time the spring is compressed only half as far before firing. How far up does the ball go this time? Neglect friction. Assume that the spring is ideal and that the distance by which the spring is compressed is negligible compared to H.

Solutions

Expert Solution

If  the spring is compressed by x , the potential energy stored in it = (1/2)*k*x^2

the potential energy is converted to potential energy of the bal when it reaches maximum height.

(1/2)*k*x^2= mgH

If the spring is compressed only half as far before firing then potential energy=(1/2)*k*(x/2)^2= (1/4)*(1/2)*k*x^2

potential energy of the ball at its maximum height= (1/4)*mgH

now the ball goes H/4 distance


Related Solutions

A spring-loaded toy gun is used to shoot a ball of mass m=1.50kg straight up in...
A spring-loaded toy gun is used to shoot a ball of mass m=1.50kg straight up in the air, as shown in (Figure 1) . The spring has spring constant k=667N/m. If the spring is compressed a distance of 25.0 centimeters from its equilibrium position y=0 and then released, the ball reaches a maximum height hmax (measured from the equilibrium position of the spring). There is no air resistance, and the ball never touches the inside of the gun. Assume that...
A spring-loaded toy gun is used to shoot a ball of mass m=1.50kg straight up in...
A spring-loaded toy gun is used to shoot a ball of mass m=1.50kg straight up in the air, as shown in (Figure 1) . The spring has spring constant k=667N/m. If the spring is compressed a distance of 25.0 centimeters from its equilibrium position y=0 and then released, the ball reaches a maximum height hmax (measured from the equilibrium position of the spring). There is no air resistance, and the ball never touches the inside of the gun. Assume that...
A spring-loaded toy gun is used to shoot a ball of mass m=1.50kg straight up in...
A spring-loaded toy gun is used to shoot a ball of mass m=1.50kg straight up in the air, as shown in (Figure 1). The spring has spring constant k=667N/m. If the spring is compressed a distance of 25.0 centimeters from its equilibrium position y=0 and then released, the ball reaches a maximum height hmax (measured from the equilibrium position of the spring). There is no air resistance, and the ball never touches the inside of the gun. Assume that all...
A spring-loaded toy gun shoots straight up, and the toy rocket (m = 250g) reaches a...
A spring-loaded toy gun shoots straight up, and the toy rocket (m = 250g) reaches a maximum height hmax of 15.0 m when the spring is compressed 7.0 cm from its equilibrium position. What is the value of the spring constant, ks? (neglect friction with air and gun and assume an ideal spring)
A ball of mass m is shot straight up into the air by a spring-loaded launcher....
A ball of mass m is shot straight up into the air by a spring-loaded launcher. Initially, the spring is compressed by a distance D. After the spring is released, the ball has a velocity v out of the launcher and finally reaches a maximum height H. Ignoring air resistance, which of the following statements are true? True False  If the spring constant is doubled, the ball will max out at height 8H True False  The initial potential energy of the spring...
A gun is used to shoot a target located at a distance of 100.0m. The gun...
A gun is used to shoot a target located at a distance of 100.0m. The gun is pointed horizontally at a height of 1.3 m above the ground. At the impact with the target, 78% of the kinetic energy of the bullet is absorbed by the target, and all vertical velocity is lost. The bullet rebounds hitting the shooter in the knee (between 50.0 and 50.2 cm above the ground). Calculate the initial velocity of the bullet with a 0.1...
A spring-loaded gun fires a 0.080-kg puck along a tabletop. The puck slides up a curved...
A spring-loaded gun fires a 0.080-kg puck along a tabletop. The puck slides up a curved ramp and flies straight up into the air. (a) If the spring is displaced 24.0 cm from equilibrium and the spring constant is 875 N/m, how high does the puck rise, neglecting friction? x = m (b) If instead it only rises to a height of 5.00 m because of friction, what is the change in mechanical energy? Wnc =
A ball thrown straight up into the air is found to be moving at 7.24 m/s...
A ball thrown straight up into the air is found to be moving at 7.24 m/s after falling 2.27 m below its release point. Find the ball's initial speed. Thank you.
The spring of a toy gun has a force constant of k = 533 N/m and...
The spring of a toy gun has a force constant of k = 533 N/m and negligible mass. The spring is compressed the length of the gun barrel, 7.25 cm, and a 0.168-g ball is placed against the compressed spring. A constant frictional force of 5.45-N acts on the ball as it travels through the barrel. The ball leaves the barrel at the moment that it loses contact with the spring. The toy gun is ‘fired’ at a height of...
A toy cannon uses a spring to project a 5.20-g soft rubber ball. The spring is...
A toy cannon uses a spring to project a 5.20-g soft rubber ball. The spring is originally compressed by 5.03 cm and has a force constant of 8.08 N/m. When the cannon is fired, the ball moves 15.6 cm through the horizontal barrel of the cannon, and the barrel exerts a constant friction force of 0.032 1 N on the ball. (a) With what speed does the projectile leave the barrel of the cannon? (b) At what point does the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT