Question

In: Physics

Two identical insulated metal spheres are separated d metres apart and carry charges of +q and...

Two identical insulated metal spheres are separated d metres apart and carry charges of +q and –q. The force that they exert on each other is 4 x 10-3 N. If the charged spheres are now separated by 3d metres, the magnitude of the new force between them is:

Solutions

Expert Solution

q = magnitude of charge on each sphere

ri = distance between the two charges initially = d

Fi = force between the two charges initially = 4 x 10-3 N

rf = distance between the two charges finally = 3d

Ff = force between the two charges finally = ?

Using coulomb's law, we have

Fi = k q2/ri2 Eq-1

similarly, for final force, we have

Ff = k q2/rf2 Eq-2

Dividing Eq-2 by Eq-1

Ff /Fi = (k q2/rf2) / (k q2/ri2)

Ff /Fi = (q2/rf2) (ri2/q2)

Ff /Fi = ri2/rf2

Ff /(4 x 10-3) = (d/(3d))2

Ff = (4 x 10-3) /9

Ff = 4.44 x 10-4 N


Related Solutions

Situation 21.1 Two identical small conducting spheres are separated by 0.60m. The spheres carry different amounts...
Situation 21.1 Two identical small conducting spheres are separated by 0.60m. The spheres carry different amounts of charge and each sphere experiences an attractive electric force of 10.8N. The total charge on the two spheres is -24 ?C. In Situation 21.1, the two spheres are connected by a slender conducting wire, which is then removed. The electric force on each sphere is closest to: Situation 21.1 Two identical small conducting spheres are separated by 0.60m. The spheres carry different amounts...
Two tiny conducting spheres are identical and carry charges of -24.9 μC and +58.4 μC. They...
Two tiny conducting spheres are identical and carry charges of -24.9 μC and +58.4 μC. They are separated by a distance of 2.02 cm. (a) What is the magnitude of the force that each sphere experiences? (b) The spheres are brought into contact and then separated to a distance of 2.02 cm. Determine the magnitude of the force that each sphere now experiences.
Part A Consider two identical dipoles, each consisting of charges +q and ?q separated by a...
Part A Consider two identical dipoles, each consisting of charges +q and ?q separated by a distance d and oriented as shown in the figure (Figure 1)a. Calculate the electric potential energy, expressed in terms of the electric dipole moment p=qd, for the situation where r?d. Ignore the potential energy involved in forming each individual molecule Express your answer in terms of the variables p, r, and appropriate constants. Part C Repeat part A for the orientation of the dipoles...
Two point charges +Q and -2Q are separated by a distance d on the X-axis. A)...
Two point charges +Q and -2Q are separated by a distance d on the X-axis. A) What is the electric field in the middle of these two point charges? B) Draw the electric filed lines for these two charges. C) Can you find a position where the net electric field from these two charges is Zero?
Two point charges +Q and -2Q are separated by a distance d on the X-axis. If...
Two point charges +Q and -2Q are separated by a distance d on the X-axis. If a third point charge is placed in the two charges’ plane, A) Where would the third charge be placed to experience a zero net force from the two point charges? B) Is the third charge must be positive or negative?
Two charges each +q are initially separated by a distance d. If you triple the distance,...
Two charges each +q are initially separated by a distance d. If you triple the distance, the magnitude of the force does what?
Two solid metal spheres of different radii are far apart. The spheres are connected by a fine metal wire. Some charge is placed on one of the spheres.
Two solid metal spheres of different radii are far apart. The spheres are connected by a fine metal wire. Some charge is placed on one of the spheres. After electrostatic equilibrium is reached, the wire is removed. Which of these quantities will be the same for the two spheres?(a) The charge on each sphere(b) The electric field inside each sphere, at the same distance from the center of the spheres(c) The electric field just outside the surface of each sphere(d)...
Two identical metal spheres A and B are connected by a plastic rod.
Two identical metal spheres A and B are connected by a plastic rod. Both are initially neutral. 4.0×1012 electrons are added to sphere A, then the connecting rod is removed. a)Afterward, what is the charge of A? b)Afterward, what is the charge of B?  
2. Two charges, each having charge of +Q are separated by distance d. What are electric...
2. Two charges, each having charge of +Q are separated by distance d. What are electric field and potential created by these two charges exactly at midpoint between them? a. Both potential and electric field are 0. b. Potential is 0, but electric field is not. c. Electric field is zero, but potential is not. d. Both potential and electric field are zero. e. We should know more about charges and distance.
Two parallel, metal plates with separation distance d = 1.00 cm carry charges of equal magnitude...
Two parallel, metal plates with separation distance d = 1.00 cm carry charges of equal magnitude but opposite sign. The plates are oriented horizontally. Assume the electric field between the plates is uniform, and it has a magnitude of 1,880 N/C. A charged particle with mass 2.00 ✕ 10−16 kg and charge 1.07 ✕ 10−6 C is projected from the center of the bottom negative plate with an initial speed of 1.08 ✕ 105 m/s at an angle of 37.0°...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT