Question

In: Physics

Situation 21.1 Two identical small conducting spheres are separated by 0.60m. The spheres carry different amounts...

Situation 21.1

Two identical small conducting spheres are separated by 0.60m. The spheres carry different amounts of charge and each sphere experiences an attractive electric force of 10.8N. The total charge on the two spheres is -24 ?C.


In Situation 21.1, the two spheres are connected by a slender conducting wire, which is then removed. The electric force on each sphere is closest to:

Situation 21.1

Two identical small conducting spheres are separated by 0.60m. The spheres carry different amounts of charge and each sphere experiences an attractive electric force of 10.8N. The total charge on the two spheres is -24 C.


In Situation 21.1, the two spheres are connected by a slender conducting wire, which is then removed. The electric force on each sphere is closest to:

zero
5.4 N, attractive
5.4 N, repulsive
3.6 N, attractive
3.6 N, repulsive

Solutions

Expert Solution

after connecting the two spheres will have the average charge=(q1+q2)/2

                                                                                           =-24?c/2

                                                                                            =-12?c

the force between themisF=(1/4??)q1q2/r2

                                       =9*10^9*144*10^-12C/0.36m^2

                                         =3.6N repulsive

option (c) is correct answer.


Related Solutions

Two tiny conducting spheres are identical and carry charges of -24.9 μC and +58.4 μC. They...
Two tiny conducting spheres are identical and carry charges of -24.9 μC and +58.4 μC. They are separated by a distance of 2.02 cm. (a) What is the magnitude of the force that each sphere experiences? (b) The spheres are brought into contact and then separated to a distance of 2.02 cm. Determine the magnitude of the force that each sphere now experiences.
Two identical insulated metal spheres are separated d metres apart and carry charges of +q and...
Two identical insulated metal spheres are separated d metres apart and carry charges of +q and –q. The force that they exert on each other is 4 x 10-3 N. If the charged spheres are now separated by 3d metres, the magnitude of the new force between them is:
There are two identical, positively charged conducting spheres fixed in space. The spheres are 43.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 43.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0675 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 41.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 41.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0600 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 34.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 34.8 cm apart (center to center) and repel each other with an electrostatic force of ?1=0.0765 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of ?2=0.100 N . The Coulomb force constant is ?=1/(4??0)=8.99×109 N⋅m2/C2 . Using this information, find the initial charge on each sphere,...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 39.6 cm39.6...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 39.6 cm39.6 cm apart (center to center) and repel each other with an electrostatic force of ?1=0.0675 NF1=0.0675 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of ?2=0.115 NF2=0.115 N . The Coulomb force constant is ?=1/(4??0)=8.99×109 N⋅m2/C2k=1/(4πϵ0)=8.99×109 N⋅m2/C2 . Using this information, find the initial...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 38.2 cm38.2...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 38.2 cm38.2 cm apart (center to center) and repel each other with an electrostatic force of ?1=0.0705 NF1=0.0705 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of ?2=0.100 NF2=0.100 N . The Coulomb force constant is ?=1/(4??0)=8.99×109 N⋅m2/C2k=1/(4πϵ0)=8.99×109 N⋅m2/C2 .
Two identical conducting spheres each having a radius of 0.500 cm are connected by a light,...
Two identical conducting spheres each having a radius of 0.500 cm are connected by a light, 2.45-m-long conducting wire. A charge of 23.0 μC is placed on one of the conductors. Assume the surface distribution of charge on each sphere is uniform. Determine the tension in the wire. Part 1 of 4 - Conceptualize: Draw a picture of the physical setup described in the problem statement. Imagine that we add charge to one of the spheres as mentioned in the...
two very small spheres are initally neutral and separated by a distance of .44m. suppose that...
two very small spheres are initally neutral and separated by a distance of .44m. suppose that 3.9E13 electrons are removed from one sphere and placed on the other. what is the magnitude of the electrostatic force that acts on each sphere?
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.8803...
Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of -0.8803 N when separated by 50 cm, center-to-center. The spheres are then connected by a thin conducting wire. When the wire is removed, the spheres repel each other with an electrostatic force of 0.0921 N. What were the initial charges on the spheres? Since one is negative and you cannot tell which is positive or negative, there are two solutions. Take the absolute value of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT