Question

In: Physics

Part C Refer back to example 9-12. A bullet with a mass of m=8.10gm and an...

Part C

Refer back to example 9-12. A bullet with a mass of m=8.10gm and an initial speed of vi=320m/s is fired into a ballistic pendulum. What mass must the bob have if the bullet-bob combination is to rise to a maximum height of 0.125 m after the collision?

Express your answer using two significant figures.

Solutions

Expert Solution

Given:

Mass of the bullet,

Initial speed of the bullet,

Maximum height of the bullet-bob combination,

=================

First, find the velocity of the bullet-bob combination just after the collision

Consider the bullet-bob combination

As the bullet-bob combination rise, its kinetic energy after collision is converted into potential energy.

==================================

Consider the collision

During collision momentum is conserved

Initial momentum = Final momentum

ANSWER:

=============================


Related Solutions

A bullet of mass m=12 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=12 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.00 m. The bullet remains in the block and the block lands a distance d=0.60 m from the bottom of the table. a)Determine the initial velocity of the bullet. vi= m/s b) Determine the loss of kinetic energy during the collision. ΔK = J
A rifle of mass M is initially at rest. A bullet of mass m is fired...
A rifle of mass M is initially at rest. A bullet of mass m is fired from the rifle with a velocity v relative to the ground. Which one of the following expressions gives the velocity of the rifle relative to the ground after the bullet is fired? A) −mv B) mv C) Mv/m D) mv/M
A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 220 g that is initially at rest at the edge of a table of height h = 1.00 m (see figure below). The bullet remains in the block, and after the impact the block lands d = 2.10 m from the bottom of the table. Determine the initial speed of the bullet. ___m/s
A bullet of mass m = 8.00 g is fired into a block of mass M...
A bullet of mass m = 8.00 g is fired into a block of mass M = 210 g that is initially at rest at the edge of a table of height h = 1.00 m (see figure below). The bullet remains in the block, and after the impact the block lands d =  1.90 m from the bottom of the table. Determine the initial speed of the bullet. ________m/s
A bullet of mass m = 29 g is fired into a wooden block of mass...
A bullet of mass m = 29 g is fired into a wooden block of mass M = 4.9 kg as shown in the figure below. The block is attached to a string of length 1.5 m. The bullet is embedded in the block, causing the block to then swing as shown in the figure. If the block reaches a maximum height of h = 0.27 m, what was the initial speed of the bullet?
A bullet of mass m=20 gr is fired into a block of mass M=5 kg initially...
A bullet of mass m=20 gr is fired into a block of mass M=5 kg initially at rest at the edge of a frictionless table of height h=0.90 m. The bullet remains in the block and the block lands a distance d=0.68 m from the bottom of the table. Picture1 a)Determine the initial velocity of the bullet. vi= m/s b) Determine the loss of kinetic Energy during the collision. ΔK = J.
A bullet of mass m=11 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=11 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.67 m from the bottom of the table. a)Determine the initial velocity of the bullet. b) Determine the loss of kinetic Energy during the collision.
A bullet of mass m=14 gr is fired into a block of mass M=1 kg initially...
A bullet of mass m=14 gr is fired into a block of mass M=1 kg initially at rest at the edge of a frictionless table of height h=1.10 m. The bullet remains in the block and the block lands a distance d=0.65 m from the bottom of the table. Determine the initial velocity of the bullet. Determine the loss of kinetic Energy during the collision
A bullet with a mass m b = 11.5 g is fired into a block of...
A bullet with a mass m b = 11.5 g is fired into a block of wood at velocity v b = 265 m/s. The block is attached to a spring that has a spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden...
A bullet with a mass m b = 13.1 g is fired into a block of...
A bullet with a mass m b = 13.1 g is fired into a block of wood at velocity v b = 245 m/s. The block is attached to a spring that has a spring constant k of 205 N/m. The block and bullet continue to move, compressing the spring by 35.0 cm before the whole system momentarily comes to a stop. Assuming that the surface on which the block is resting is frictionless, determine the mass of the wooden...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT