In: Statistics and Probability
What we are trying to do is predict NBA playoff victories for any given team (dependent variable) using advanced metrics. The columns that are NOT Playoff Wins are the independent variables. There are 12 of them. Your job is to simply provide a good model from a set of the advanced metrics (independent variables). The model must include at least six independent variables.
Dependent Variable | ||||||||||||
Playoff Wins | OffRtg | DefRtg | AST% | AST/TO | ASTRatio | OREB% | DREB% | REB% | TOV% | eFG% | TS% | PACE |
7 | 111.6 | 109 | 64.8 | 1.8 | 18.7 | 27.8 | 74.1 | 51.7 | 14.4 | 53.2 | 57.4 | 102.59 |
7 | 112.1 | 108.1 | 65.3 | 2.04 | 19.3 | 30.8 | 74.4 | 52.4 | 13.6 | 52.7 | 55.8 | 98.49 |
6 | 114.9 | 110.1 | 54.1 | 1.59 | 15.9 | 26.9 | 70 | 48.1 | 13.5 | 54.2 | 58.1 | 98.39 |
5 | 107.4 | 103 | 58.6 | 1.53 | 17.1 | 25.6 | 75.6 | 50.9 | 15.2 | 52.7 | 56.4 | 96.58 |
5 | 108.5 | 103.9 | 66.3 | 1.64 | 19.1 | 28.6 | 73.6 | 52 | 16.3 | 53.5 | 56.8 | 100.75 |
5 | 108.5 | 107.4 | 62.7 | 1.79 | 19 | 24 | 72.6 | 49.4 | 14.5 | 54.1 | 57.3 | 101.48 |
4 | 113 | 105.3 | 59 | 1.82 | 17.9 | 27.4 | 72.5 | 50.2 | 13.5 | 53.9 | 57.5 | 98.02 |
10 | 113.5 | 104.9 | 60.1 | 1.88 | 18.3 | 25 | 75.7 | 51.6 | 13.3 | 55 | 58.3 | 103.57 |
8 | 113.7 | 109.5 | 54.4 | 1.66 | 16.6 | 30.8 | 73.9 | 52.6 | 13.7 | 52.8 | 56.8 | 99.96 |
11 | 106.8 | 103.2 | 58.6 | 1.6 | 17 | 26.3 | 73.9 | 50.4 | 14.4 | 51.8 | 55.2 | 96.75 |
11 | 114.1 | 105.7 | 55.7 | 1.56 | 16.4 | 25.4 | 75 | 50.3 | 14.1 | 55.1 | 59 | 98.02 |
16 | 112.6 | 106.8 | 60.3 | 1.81 | 18.2 | 26.5 | 72.6 | 50.2 | 13.8 | 54.3 | 57.9 | 100.52 |
14 | 115 | 108.6 | 66.8 | 2.06 | 20.4 | 25.7 | 72.7 | 50.5 | 13.9 | 56.5 | 59.6 | 101.73 |
12 | 112 | 111.1 | 57.9 | 1.7 | 17.5 | 24.3 | 73 | 49.2 | 13.9 | 54.7 | 58.4 | 98.72 |
16 | 112.8 | 106.8 | 68.5 | 1.9 | 20.9 | 24.3 | 71.2 | 49.7 | 15.3 | 56.9 | 60.3 | 100.35 |
0 | 102.7 | 108.2 | 63.1 | 1.43 | 17.4 | 27.3 | 70.9 | 49 | 16.7 | 50.1 | 53.9 | 99.07 |
0 | 103.6 | 110.1 | 56.6 | 1.29 | 15.9 | 24.1 | 71.6 | 48.3 | 16.2 | 50.7 | 55.1 | 101.75 |
0 | 103.7 | 110.3 | 58 | 1.67 | 16.8 | 26.7 | 72.6 | 49.1 | 13.7 | 48.9 | 52.4 | 96.9 |
2 | 104.5 | 105.2 | 62.1 | 1.5 | 17.4 | 28.2 | 71.7 | 50.2 | 16 | 50.4 | 54.1 | 97.76 |
0 | 104.7 | 106.8 | 58.2 | 1.77 | 17.1 | 22.8 | 72.8 | 48 | 12.9 | 50.4 | 53.9 | 98.56 |
0 | 104.7 | 107.7 | 57.4 | 1.75 | 16.8 | 21.6 | 73.3 | 46.5 | 12.7 | 50.5 | 54.1 | 93.11 |
0 | 105.3 | 106.7 | 53 | 1.78 | 16.1 | 28.6 | 77.5 | 51.9 | 12.3 | 49.2 | 52.1 | 95.52 |
0 | 105.3 | 112 | 53.2 | 1.38 | 15.6 | 28.4 | 71.7 | 49.4 | 15.3 | 50.1 | 53.7 | 99.26 |
0 | 106.1 | 111.3 | 49.1 | 1.27 | 14.4 | 29.9 | 71.8 | 50.3 | 15.2 | 49.3 | 53.8 | 100.85 |
2 | 106.5 | 106.2 | 58.4 | 1.66 | 16.8 | 31.1 | 73.3 | 51.9 | 14 | 48.7 | 53 | 96.02 |
0 | 106.6 | 110.8 | 59.4 | 1.54 | 17.3 | 25.8 | 72.3 | 49.2 | 15.2 | 51.6 | 55.6 | 95.42 |
2 | 107 | 106.5 | 58.4 | 1.65 | 16.5 | 29.5 | 73.1 | 50.7 | 13.7 | 49.1 | 53.5 | 92.84 |
0 | 107.1 | 110.7 | 55.1 | 1.57 | 16.3 | 30.5 | 69.8 | 50 | 14.3 | 49.6 | 53.4 | 96.63 |
0 | 107.4 | 106.4 | 54.4 | 1.58 | 16.3 | 28.4 | 71.8 | 49.9 | 14 | 51.2 | 54.1 | 95.51 |
1 | 107.9 | 107.1 | 53.2 | 1.4 | 15.5 | 32.3 | 74.2 | 52.8 | 15.2 | 50 | 54 | 98.18 |
0 | 107.9 | 108.1 | 57.2 | 1.63 | 17.2 | 25.5 | 71.3 | 48.8 | 14.1 | 51.6 | 55.8 | 96.59 |
0 | 108.4 | 108.4 | 61.1 | 2.01 | 17.6 | 24.7 | 74.9 | 49.6 | 11.9 | 50.1 | 54.7 | 95.92 |
2 | 108.5 | 108.7 | 62.4 | 1.73 | 18.5 | 26 | 70.6 | 48.7 | 14.6 | 52.7 | 56.5 | 94.99 |
4 | 109 | 104.7 | 54.4 | 1.48 | 16.2 | 27 | 74.3 | 51.4 | 14.8 | 52.6 | 56.3 | 92.09 |
0 | 109.4 | 110 | 53.4 | 1.54 | 16 | 26.9 | 72 | 49.6 | 13.9 | 52 | 55.9 | 97.38 |
0 | 110 | 110.9 | 60 | 1.69 | 17.7 | 30.9 | 71 | 50.7 | 14.6 | 51.1 | 55.5 | 95.48 |
8 | 110.3 | 102.9 | 60.6 | 1.77 | 18.1 | 28.2 | 73 | 51.1 | 14.1 | 52.4 | 56.4 | 94.86 |
7 | 110.4 | 108.8 | 57.7 | 1.68 | 17.6 | 28.6 | 71.6 | 50.1 | 14.3 | 52.8 | 56.4 | 97.94 |
9 | 110.6 | 108 | 65.3 | 1.9 | 18.8 | 25.9 | 70.5 | 48.5 | 13.6 | 52.5 | 56.7 | 97.21 |
4 | 111.4 | 107.1 | 47.2 | 1.46 | 14.5 | 29.1 | 71.7 | 50.5 | 13.2 | 51.7 | 56.1 | 95.41 |
3 | 111.8 | 107.5 | 57 | 1.74 | 17.2 | 25.6 | 73.3 | 50.1 | 13.3 | 53.7 | 57.4 | 96.77 |
0 | 112.2 | 111.7 | 61.5 | 1.69 | 18.2 | 31.4 | 75.3 | 53.2 | 15 | 53 | 56.8 | 99.18 |
13 | 112.8 | 109.7 | 56.7 | 1.66 | 17.1 | 26.4 | 72.2 | 49.9 | 14 | 54.7 | 58 | 96.74 |
6 | 114.1 | 108.4 | 62.6 | 1.67 | 18.1 | 28.1 | 71.7 | 49.9 | 15 | 54.5 | 58.3 | 100.55 |
16 | 114.8 | 103.4 | 70.5 | 2.06 | 21.2 | 27.2 | 70.9 | 50.4 | 14.6 | 56.3 | 59.7 | 100.37 |
The regression equation is:
Playoff Wins = -61.7421 - 0.3672*DefRtg + 4.5193*AST/TO - 0.2395*ASTRatio + 0.1604*OREB% + 1.4905*eFG% + 0.3639*TS%
The final model is:
R² | 0.708 | |||||
Adjusted R² | 0.662 | |||||
R | 0.841 | |||||
Std. Error | 2.986 | |||||
n | 45 | |||||
k | 6 | |||||
Dep. Var. | Playoff Wins | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 820.4074 | 6 | 136.7346 | 15.34 | 7.76E-09 | |
Residual | 338.7926 | 38 | 8.9156 | |||
Total | 1,159.2000 | 44 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=38) | p-value | 95% lower | 95% upper |
Intercept | -61.7421 | |||||
DefRtg | -0.3672 | 0.1941 | -1.891 | .0662 | -0.7602 | 0.0258 |
AST/TO | 4.5193 | 3.9752 | 1.137 | .2627 | -3.5282 | 12.5667 |
ASTRatio | -0.2395 | 0.5883 | -0.407 | .6862 | -1.4304 | 0.9514 |
OREB% | 0.1604 | 0.1982 | 0.810 | .4232 | -0.2407 | 0.5616 |
eFG% | 1.4905 | 1.1789 | 1.264 | .2138 | -0.8961 | 3.8770 |
TS% | 0.3639 | 1.1906 | 0.306 | .7615 | -2.0463 | 2.7741 |