In: Advanced Math
1.Is there evidence of multicollinearity? Perform Factor analysis by extracting four factors and name for those factors.
Problem needs to solved using R
ID | ProdQual | Ecom | TechSup | CompRes | Advertising | ProdLine | SalesFImage | ComPricing | WartyClaim | OrdBilling | DelSpeed | Satisfaction |
1 | 8.5 | 3.9 | 2.5 | 5.9 | 4.8 | 4.9 | 6 | 6.8 | 4.7 | 5 | 3.7 | 8.2 |
2 | 8.2 | 2.7 | 5.1 | 7.2 | 3.4 | 7.9 | 3.1 | 5.3 | 5.5 | 3.9 | 4.9 | 5.7 |
3 | 9.2 | 3.4 | 5.6 | 5.6 | 5.4 | 7.4 | 5.8 | 4.5 | 6.2 | 5.4 | 4.5 | 8.9 |
4 | 6.4 | 3.3 | 7 | 3.7 | 4.7 | 4.7 | 4.5 | 8.8 | 7 | 4.3 | 3 | 4.8 |
5 | 9 | 3.4 | 5.2 | 4.6 | 2.2 | 6 | 4.5 | 6.8 | 6.1 | 4.5 | 3.5 | 7.1 |
6 | 6.5 | 2.8 | 3.1 | 4.1 | 4 | 4.3 | 3.7 | 8.5 | 5.1 | 3.6 | 3.3 | 4.7 |
7 | 6.9 | 3.7 | 5 | 2.6 | 2.1 | 2.3 | 5.4 | 8.9 | 4.8 | 2.1 | 2 | 5.7 |
8 | 6.2 | 3.3 | 3.9 | 4.8 | 4.6 | 3.6 | 5.1 | 6.9 | 5.4 | 4.3 | 3.7 | 6.3 |
9 | 5.8 | 3.6 | 5.1 | 6.7 | 3.7 | 5.9 | 5.8 | 9.3 | 5.9 | 4.4 | 4.6 |
7 |
>plot(data)
>cor(data)
ProdQual | Ecom | TechSup | CompRes | Advertising | ProdLine | SalesFImage | ComPricing | WartyClaim | OrdBilling | DelSpeed | Satisfaction | |
ProdQual | 1.000 | 0.070 | -0.026 | 0.260 | 0.005 | 0.570 | 0.029 | -0.798 | 0.002 | 0.440 | 0.271 | 0.639 |
Ecom | 0.070 | 1.000 | -0.091 | -0.167 | 0.000 | -0.361 | 0.911 | 0.229 | -0.157 | 0.117 | -0.308 | 0.561 |
TechSup | -0.026 | -0.091 | 1.000 | -0.137 | -0.094 | 0.263 | -0.107 | 0.036 | 0.841 | -0.008 | -0.002 | -0.159 |
CompRes | 0.260 | -0.167 | -0.137 | 1.000 | 0.295 | 0.791 | -0.032 | -0.489 | 0.026 | 0.581 | 0.952 | 0.447 |
Advertising | 0.005 | 0.000 | -0.094 | 0.295 | 1.000 | 0.231 | 0.273 | -0.324 | 0.235 | 0.690 | 0.388 | 0.313 |
ProdLine | 0.570 | -0.361 | 0.263 | 0.791 | 0.231 | 1.000 | -0.236 | -0.676 | 0.408 | 0.626 | 0.867 | 0.415 |
SalesFImage | 0.029 | 0.911 | -0.107 | -0.032 | 0.273 | -0.236 | 1.000 | 0.089 | -0.099 | 0.291 | -0.089 | 0.694 |
ComPricing | -0.798 | 0.229 | 0.036 | -0.489 | -0.324 | -0.676 | 0.089 | 1.000 | -0.038 | -0.542 | -0.576 | -0.573 |
WartyClaim | 0.002 | -0.157 | 0.841 | 0.026 | 0.235 | 0.408 | -0.099 | -0.038 | 1.000 | 0.421 | 0.209 | -0.042 |
OrdBilling | 0.440 | 0.117 | -0.008 | 0.581 | 0.690 | 0.626 | 0.291 | -0.542 | 0.421 | 1.000 | 0.659 | 0.674 |
DelSpeed | 0.271 | -0.308 | -0.002 | 0.952 | 0.388 | 0.867 | -0.089 | -0.576 | 0.209 | 0.659 | 1.000 | 0.439 |
Satisfaction | 0.639 | 0.561 | -0.159 | 0.447 | 0.313 | 0.415 | 0.694 | -0.573 | -0.042 | 0.674 | 0.439 | 1.000 |
Lets take y = ProdQual, remaning are independent variables (x) // not given in problem
Correlation of Advertising, WartyClaim, SalesFImage, TechSup, is very less with ProdQual
hence these factors are removed from model
> fit <- lm(data$ProdQual ~ data$Satisfaction + data$Ecom + data$CompRes + data$ProdLine + data$ComPricing + data$OrdBilling + data$DelSpeed)
> summary(fit)
Call:
lm(formula = data$ProdQual ~ data$Satisfaction + data$Ecom +
data$CompRes + data$ProdLine + data$ComPricing + data$OrdBilling +
data$DelSpeed)
Residuals:
1
2
3
4
5
6
7
8 9
-0.071003 -0.001687 -0.118268 -0.061503 0.245459 -0.075776
-0.034283 0.101407 0.015653
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.317 on 1 degrees of freedom
Multiple R-squared: 0.9927, Adjusted R-squared:
0.9413
F-statistic: 19.34 on 7 and 1 DF, p-value: 0.1734