In: Statistics and Probability
[Chebyshev inequality] For any random variable X and any \( a > 0 \), we have
\( P(|X-E(X)|\geq a)\leq\frac{V(X)}{a^2} \)
Solution
For any random variable X and any \( a > 0 \)
[Chebyshev inequality] : \( P(|X-E(X)|\geq a)\leq\frac{V(X)}{a^2} \)
\( \implies P(|X-E(X)|\geq a)=P(|X-E(X)|^2\geq a^2) \)
\( \leq \frac{E\left(\left|X-E\left(X\right)\right|^2\right)}{a^2}=\frac{V\left(X\right)}{a^2} \)
Therefore. \( P(|X-E(X)|\geq a)\leq\frac{V(X)}{a^2} \)
Therefore.\( P(|X-E(X)|\geq a)\leq\frac{V(X)}{a^2} \)