In: Statistics and Probability
#2) Fourteen second year
medical students took blood pressure measurements of the same
patient and the
results are listed below.
Systolic | 138 130 135 140 120 125 120 130 130 144 143 140 130 150
Diastolic | 82
91 100
100 80
90
80
80
80 98
105
85
70 100
2.
a.
( X) | ( Y) | X^2 | Y^2 | X*Y |
138 | 82 | 19044 | 6724 | 11316 |
130 | 91 | 16900 | 8281 | 11830 |
135 | 100 | 18225 | 10000 | 13500 |
140 | 100 | 19600 | 10000 | 14000 |
120 | 80 | 14400 | 6400 | 9600 |
125 | 90 | 15625 | 8100 | 11250 |
120 | 80 | 14400 | 6400 | 9600 |
130 | 80 | 16900 | 6400 | 10400 |
130 | 80 | 16900 | 6400 | 10400 |
144 | 98 | 20736 | 9604 | 14112 |
143 | 105 | 20449 | 11025 | 15015 |
140 | 85 | 19600 | 7225 | 11900 |
130 | 70 | 16900 | 4900 | 9100 |
150 | 100 | 22500 | 10000 | 15000 |
calculation procedure for correlation
sum of (x) = ∑x = 2155
sum of (y) = ∑y = 1411
sum of (x^2)= ∑x^2 = 291579
sum of (y^2)= ∑y^2 = 126359
sum of (x*y)= ∑x*y = 191123
to caluclate value of r( x,y) = covariance ( x,y ) / sd (x) * sd
(y)
covariance ( x,y ) = [ ∑x*y - N *(∑x/N) * (∑y/N) ]/n-1
= 191123 - [ 16 * (2155/16) * (1411/16) ]/16- 1
= 67.434
and now to calculate r( x,y) = 67.434/
(SQRT(1/16*191123-(1/16*2155)^2) ) * (
SQRT(1/16*191123-(1/16*1411)^2)
=67.434 / (9.109*10.973)
=0.675
value of correlation is =0.675
coefficient of determination = r^2 = 0.455
properties of correlation
1. If r = 1 Corrlation is called Perfect Positive Correlation
2. If r = -1 Correlation is called Perfect Negative
Correlation
3. If r = 0 Correlation is called Zero Correlation
& with above we conclude that correlation ( r ) is = 0.6747>
0 ,perfect positive correlation
b.
Given that,
value of r =0.675
number (n)=14
null, Ho: ρ =0
alternate, H1: ρ!=0
level of significance, α = 0.05
from standard normal table, two tailed t α/2 =2.179
since our test is two-tailed
reject Ho, if to < -2.179 OR if to > 2.179
we use test statistic (t) = r / sqrt(1-r^2/(n-2))
to=0.675/(sqrt( ( 1-0.675^2 )/(14-2) )
to =3.169
|to | =3.169
critical value
the value of |t α| at los 0.05% is 2.179
we got |to| =3.169 & | t α | =2.179
make decision
hence value of | to | > | t α| and here we reject Ho
ANSWERS
---------------
null, Ho: ρ =0
alternate, H1: ρ!=0
test statistic: 3.169
critical value: -2.179 , 2.179
decision: reject Ho
we have enough evidence to support the claim that significant
correlation between systolic and diastolic blood pressure.
c.
Line of Regression Y on X i.e Y = bo + b1 X | ||||
X | Y | (Xi - Mean)^2 | (Yi - Mean)^2 | (Xi-Mean)*(Yi-Mean) |
138 | 82 | 16.576 | 44.128 | -27.046 |
130 | 91 | 15.434 | 5.556 | -9.26 |
135 | 100 | 1.148 | 128.984 | 12.168 |
140 | 100 | 36.862 | 128.984 | 68.953 |
120 | 80 | 194.006 | 74.7 | 120.383 |
125 | 90 | 79.72 | 1.842 | -12.117 |
120 | 80 | 194.006 | 74.7 | 120.383 |
130 | 80 | 15.434 | 74.7 | 33.954 |
130 | 80 | 15.434 | 74.7 | 33.954 |
144 | 98 | 101.433 | 87.555 | 94.239 |
143 | 105 | 82.29 | 267.555 | 148.382 |
140 | 85 | 36.862 | 13.271 | -22.118 |
130 | 70 | 15.434 | 347.558 | 73.24 |
150 | 100 | 258.29 | 128.984 | 182.524 |
calculation procedure for regression
mean of X = ∑ X / n = 133.9286
mean of Y = ∑ Y / n = 88.6429
∑ (Xi - Mean)^2 = 1062.929
∑ (Yi - Mean)^2 = 1453.22
∑ (Xi-Mean)*(Yi-Mean) = 817.639
b1 = ∑ (Xi-Mean)*(Yi-Mean) / ∑ (Xi - Mean)^2
= 817.639 / 1062.929
= 0.769
bo = ∑ Y / n - b1 * ∑ X / n
bo = 88.6429 - 0.769*133.9286 = -14.379
value of regression equation is, Y = bo + b1 X
Y'=-14.379+0.769* X
d.
Standard Error of Y on X i.e Y = bo + b1 X | ||||
Xi | Yi | Y'=-14.38+0.77*X | Y-Y' | (Y-Yi)^2 |
138 | 82 | 91.743 | -9.743 | 94.926 |
130 | 91 | 85.591 | 5.409 | 29.257 |
135 | 100 | 89.436 | 10.564 | 111.598 |
140 | 100 | 93.281 | 6.719 | 45.145 |
120 | 80 | 77.901 | 2.099 | 4.406 |
125 | 90 | 81.746 | 8.254 | 68.129 |
120 | 80 | 77.901 | 2.099 | 4.406 |
130 | 80 | 85.591 | -5.591 | 31.259 |
130 | 80 | 85.591 | -5.591 | 31.259 |
144 | 98 | 96.357 | 1.643 | 2.699 |
143 | 105 | 95.588 | 9.412 | 88.586 |
140 | 85 | 93.281 | -8.281 | 68.575 |
130 | 70 | 85.591 | -15.591 | 243.079 |
150 | 100 | 100.971 | -0.971 | 0.943 |
Standard error = Sqrt( ( ∑ Y -Yi )^2/ n-2 )
∑ Y -Yi )^2 = 824.267
Standard Error = 8.288
Standard Error^2 = 66.304