Question

In: Computer Science

It is known that the sentence E: if (if P then not (Q or R) else...

It is known that the sentence E: if (if P then not (Q or R) else not P) then (not (Q and S) if and only if (not Q or not S)). Investigate whether I = {S ← false, R ← false, Q '← true, P ← false} interpretations are interpretations for sentence E.

Solutions

Expert Solution

if (if P then not (Q or R) else not P) then (not (Q and S) if and only if (not Q or not S))

The sentence can be written as:

(P→(​​​​​(QR)P))→((QS)→(QS))

Given, the statement

I = {S ← false, R ← false, Q '← true, P ← false}

P Q R S P Q R S (QR) ((QR)P) P→((QR)P) (QS) (QS) (QS)→(QS) (P→((QR)P))→((QS)→(QS))
T T T T F F F F T T T T T T T

As the conclusion is true for the given interpretation.

Therefore, the interpretation I are interpretations for sentence E.


Related Solutions

Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then...
Show that if P;Q are projections such that R(P) = R(Q) and N(P) = N(Q), then P = Q.
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
Prove p → (q ∨ r), q → s, r → s ⊢ p → s
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧...
FOR EAICH PAIR OF PROPOSITIONS P AND Q STATE WHETHER ON NOT p=q p=(s→(p ∧¬r)) ∧ ((p→(r ∨ q)) ∧ s), Q=p ∨ t
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q)...
prove or disprove using logical equivalences (a) p ∧ (q → r) ⇐⇒ (p → q) → r (b) x ∧ (¬y ↔ z) ⇐⇒ ((x → y) ∨ ¬z) → (x ∧ ¬(y → z)) (c) (x ∨ y ∨ ¬z) ∧ (¬x ∨ y ∨ z) ⇐⇒ ¬y → (x ↔ z)
Let A = {r belongs to Q : e < r < pi} show that A...
Let A = {r belongs to Q : e < r < pi} show that A is closed and bounded but not compact
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼...
1.) Suppose that the statement form ((p ∧ ∼ q)∨(p ∧ ∼ r))∧(∼ p ∨ ∼ s) is true. What can you conclude about the truth values of the variables p, q, r and s? Explain your reasoning 2.Use the Laws of Logical Equivalence (provided in class and in the textbook page 35 of edition 4 and page 49 of edition 5) to show that: ((∼ (p ∨ ∼ q) ∨ (∼ p ∧ ∼ r)) ∧ s) ≡ ((r...
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t}...
Suppose S = {p, q, r, s, t, u} and A = {p, q, s, t} and B = {r, s, t, u} are events. x p q r s t u p(x) 0.15 0.25 0.2 0.15 0.1 (a) Determine what must be p(s). (b) Find p(A), p(B) and p(A∩B). (c) Determine whether A and B are independent. Explain. (d) Arer A and B mutually exclusive? Explain. (e) Does this table represent a probability istribution of any random variable? Explain.
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
Given the function u(p,q,r)=((p-q)/(q-r)), with p=x+y+z,q=x-y+z, and r=x+y-z, find the partial derivatives au/ax=, au/ay=, au/az=
A list of six positive integers, p, q, r, s, t, u satisfies p < q...
A list of six positive integers, p, q, r, s, t, u satisfies p < q < r < s < t < u. There are exactly 15 pairs of numbers that can be formed by choosing two different numbers from this list. The sums of these 15 pairs of numbers are: 25, 30, 38, 41, 49, 52, 54, 63, 68, 76, 79, 90, 95, 103, 117. Which sum equals r + s?
Discrete math question Prove that ¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
Discrete math question Prove that ¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT