In: Computer Science
It is known that the sentence E: if (if P then not (Q or R) else not P) then (not (Q and S) if and only if (not Q or not S)). Investigate whether I = {S ← false, R ← false, Q '← true, P ← false} interpretations are interpretations for sentence E.
if (if P then not (Q or R) else not P) then (not (Q and S) if and only if (not Q or not S))
The sentence can be written as:
(P→((QR)P))→((QS)→(QS))
Given, the statement
I = {S ← false, R ← false, Q '← true, P ← false}
P | Q | R | S | P | Q | R | S | (QR) | ((QR)P) | P→((QR)P) | (QS) | (QS) | (QS)→(QS) | (P→((QR)P))→((QS)→(QS)) |
T | T | T | T | F | F | F | F | T | T | T | T | T | T | T |
As the conclusion is true for the given interpretation.
Therefore, the interpretation I are interpretations for sentence E.