Question

In: Chemistry

100 moles of ethane (C2H6) are burned with 50% excess air. The percentage conversion of the...

100 moles of ethane (C2H6) are burned with 50% excess air. The percentage conversion of the ethane is 90%; of the ethane burned, 25% reacts to form CO and the balance reacts to form CO2. Calculate the molar composition of the stack gas on a dry basis and the mole ratio of water to dry stack gas.

Solutions

Expert Solution


Related Solutions

Ethane gas (C2H6) is burned with air. The fuel flow rate is 0.1 kg/s and the...
Ethane gas (C2H6) is burned with air. The fuel flow rate is 0.1 kg/s and the air flowrate is 2.2 kg/s. Ethane’s enthalpy of formation is -84,680 kJ/kmol. Determine: The equivalence ratio Ethane’s lower heating value by deriving it from enthalpy of formation data. The heat release rate, in kW. The mass fraction of oxygen in the products. The mass of CO2 emitted per 1000 hours of operation. The mass of fuel burned per 1000 hours of operation. The adiabatic...
Ethane (C2H6) is burned with air in a steady-flow combustor. The mass flow rate of fuel...
Ethane (C2H6) is burned with air in a steady-flow combustor. The mass flow rate of fuel entering the combustor is 0.57 kg/s and the equivalence ratio is 0.64. The fuel enters at 25oC and the air enters at 500 K. Determine: The heat release rate, in kW. The mass flow rate of air, in kg/s. The mole fraction of O2 in the products. The mass fraction of CO2 in the products. The total mass of CO2 produced per year (365...
The gas ethane, C2H6(g), can be used in welding. When ethane is burned in oxygen, the...
The gas ethane, C2H6(g), can be used in welding. When ethane is burned in oxygen, the reaction is: 2 C2H6(g) + 7 O2(g)------>4 CO2(g) + 6 H2O(g) (a) Using the following data, calculate ΔH° for this reaction. ΔH°f kJ mol-1:   C2H6(g) = -84.0 ; CO2(g) = -393.5 ; H2O(g) = -241.8 ΔH° = ___________ kJ (b) Calculate the total heat capacity of 4 mol of CO2(g) and 6 mol of H2O(g), using CCO2(g) = 37.1 J K-1 mol-1 and CH2O(g)...
100 moles/hour of pure ethane at 25 degrees Celsius and 1.0 atm are burned with 50.0%...
100 moles/hour of pure ethane at 25 degrees Celsius and 1.0 atm are burned with 50.0% excess air producing a desired product of carbon dioxide and an undesired product of carbon monoxide. The fractional conversion of the ethane is 80.0% (on a molar basis). 95% of ethane that reacts goes to carbon dioxide. Determine the molar flow rate and molar composition of the gaseous product stream, which is at 400 degrees Celsius and 1.0 atm. Completely label your diagram, list...
Ethane (C2H6) is combusted in 18.1% excess oxygen (O2) in an adiabatic reactor. The feed of...
Ethane (C2H6) is combusted in 18.1% excess oxygen (O2) in an adiabatic reactor. The feed of ethane enters the reactor at 25.8 mol/hr and 93.7°C. The stream exiting the reactor contains ethane, oxygen, carbon dioxide (CO2), carbon monoxide (CO) and water (H2O), so ethane reacts by both complete and partial combustion reactions. The conversion of ethane is 15.8% and the conversion of oxygen is 12.3%. Assume that pressure effects are negligible. (a) Draw and label a process flow diagram. Number...
Ethane (C2H6) is combusted in 18.1% excess oxygen (O2) in an adiabatic reactor. The feed of...
Ethane (C2H6) is combusted in 18.1% excess oxygen (O2) in an adiabatic reactor. The feed of ethane enters the reactor at 25.8 mol/hr and 93.7°C. The stream exiting the reactor contains ethane, oxygen, carbon dioxide (CO2), carbon monoxide (CO) and water (H2O), so ethane reacts by both complete and partial combustion reactions. The conversion of ethane is 15.8% and the conversion of oxygen is 12.3%. Assume that pressure effects are negligible. a.Draw and label a process flow diagram. Number each...
A 2.20 g sample of the Ethane C2H6 gas was mixed with excess oxygen gas and...
A 2.20 g sample of the Ethane C2H6 gas was mixed with excess oxygen gas and a combustion reaction occurred to obtain water in liquid aggregate and carbon dioxide state. The combustion reaction occurred at a constant calorimeter under standard conditions. After the reaction was completed, the temperature in the calorimeter rose by 1.3K. The heat capacity of the calorimeter is 88.8 kJ / K. 1. Write a balanced response to the burning process that took place. 2. Consider the...
100 m3 of a fuel oil are burned per hour with 20 percent excess air in...
100 m3 of a fuel oil are burned per hour with 20 percent excess air in a steam generator. The fuel oil has a density of 926 kg/m3 and the following mass composition: 87% C, 12% H2, 1% S. Air enters the boiler at 100 kPa and 15 °C. Determine the following: (a). The volumetric flow rate of the air (m3 /min) fed to the boiler; (b). The flue gas molar composition on a dry basis, reporting all constituents to...
100 mol n-Hexane (C6H14) is burned with excess air. An analysis of the product gas yields...
100 mol n-Hexane (C6H14) is burned with excess air. An analysis of the product gas yields the following dry-basis molar composition: 6.9% CO2, 2.1% CO, 0.265% C6H14 (+ O2 and N2). The stack gas emerges at 760 mm Hg. Calculate the percentage conversion of hexane, the percentage excess air fed to the burner, and the dew point of the stack gas, taking water to be the only condensable species.
A fuel gas containing methane and ethane is burned with air in a furnace, producing a...
A fuel gas containing methane and ethane is burned with air in a furnace, producing a stack gas at 300.°C and 105 kPa (absolute). You analyze the stack gas and find that it contains no unburned hydrocarbons, oxygen, or carbon monoxide. You also determine the dew-point temperature. (a) Estimate the range of possible dew-point temperatures by determining the dew points when the feed is either pure methane or pure ethane. (b) Estimate the fraction of the feed that is methane...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT