Question

In: Computer Science

Runtime complexity of Insertion sort and Mergesort algirthms- and analysis with different size of inputs: In...

Runtime complexity of Insertion sort and Mergesort algirthms- and analysis with different size of inputs: In python

Implement a method to sort a given array using the merge sort algorithm.

Write a driver program to test the merge sort algorithm and insertion sort algorithm for the arrays of varying lengths provided.. Ex: array lenth 100, Array lenth 1000 etc.

Compare the execution time of merge sort with insertion sort. Make sure you use the same array to compare the performance. Use a table or plot to summarize the results and document your observations and analysis in the report.

Based on the performance results obtained above, modify the merge sort algorithm such that when the array size gets small enough, you would invoke insertion sort instead of invoking merge sort (hint: you have to change the base condition in the recursion). Instead of hardcoding the array size make it a variable that you can pass as an argument to the merge sort method and test this cutoff value with at least four different values.

Test the program for the same array sizes and values. Compare the performance with the original merge sort implementation, plot the execution times, and document the analysis in your lab report.

Solutions

Expert Solution

import random
MAX_INT = 100
MIN_INT = 0
import time

def insertionSort(x) :
    result = []
    for i in range( 1, len(x)):
        result.append(x[i]);

    for i in range( 1, len(result)):
        temp = result[i]
        k = i
        while k > 0 and temp < result[k-1] :
            result[k] = result[k - 1]
            k -= 1
        result[k] = temp
    return result


def mergeSort(x) :
    if len(x) <= 1:
        return x
    mid = int(len(x)/2)
    a = mergeSort(x[:mid])
    b = mergeSort(x[mid:])
    return merge(a,b)

def mergeSortWithInsertion(x, minSize) :
    if len(x) <= minSize or len(x) <= 1 :
        return insertionSort(x)
    mid = int(len(x)/2)
    a = mergeSortWithInsertion(x[:mid], minSize)
    b = mergeSortWithInsertion(x[mid:], minSize)
    return merge(a,b)

def merge(a, b) :
    result = []
    i = 0
    j = 0
    while i<len(a) and j<len(b) :
        if a[i] > b[j] :
            result.append(b[j])
            j += 1
        else :
            result.append(a[i])
            i += 1
    result += a[i:]
    result += b[j:]
    return result


def getRandArrayOfRandSize(n) :
    listOfNumbers = [];
    for x in range (0, n):
        listOfNumbers.append(random.randint(MIN_INT, MAX_INT))
    return listOfNumbers


## Testing Code
for i in range(1,11) :
    x = getRandArrayOfRandSize(i*2000)

    print("\n------ STARTING CASE-", i , "------ [ Input Size = ", len(x), "]")
    start_time = time.clock()
    insertionSort(x)
    print("insertion sort = ", time.clock() - start_time, "seconds")

    start_time = time.clock()
    mergeSort(x)
    print("merge sort = ", time.clock() - start_time, "seconds")

    start_time = time.clock()
    mergeSortWithInsertion(x, 10)
    print("merge sort + insertion_sort (size = 10) = ", time.clock() - start_time, "seconds")

    start_time = time.clock()
    mergeSortWithInsertion(x, 25)
    print("merge sort + insertion_sort (size = 25) = ", time.clock() - start_time, "seconds")

    start_time = time.clock()
    mergeSortWithInsertion(x, 50)
    print("merge sort + insertion_sort (size = 50) = ", time.clock() - start_time, "seconds")

    start_time = time.clock()
    mergeSortWithInsertion(x, 100)
    print("merge sort + insertion_sort (size = 100) = ", time.clock() - start_time, "seconds")

    start_time = time.clock()
    mergeSortWithInsertion(x, 250)
    print("merge sort + insertion_sort (size = 250) = ", time.clock() - start_time, "seconds")

    start_time = time.clock()
    mergeSortWithInsertion(x, 500)
    print("merge sort + insertion_sort (size = 500) = ", time.clock() - start_time, "seconds")

    print("------ END OF CASE-" , i , "------ \n")

OUTPUT

-------------------------------------------------------------------------

------ STARTING CASE- 1 ------ [ Input Size = 2000 ]
insertion sort = 0.097832 seconds
merge sort = 0.005801 seconds
merge sort + insertion_sort (size = 10) = 0.003716 seconds
merge sort + insertion_sort (size = 25) = 0.004153 seconds
merge sort + insertion_sort (size = 50) = 0.004135 seconds
merge sort + insertion_sort (size = 100) = 0.005187 seconds
merge sort + insertion_sort (size = 250) = 0.013626 seconds
merge sort + insertion_sort (size = 500) = 0.025309 seconds
------ END OF CASE- 1 ------


------ STARTING CASE- 2 ------ [ Input Size = 4000 ]
insertion sort = 0.388726 seconds
merge sort = 0.011991 seconds
merge sort + insertion_sort (size = 10) = 0.008189 seconds
merge sort + insertion_sort (size = 25) = 0.008449 seconds
merge sort + insertion_sort (size = 50) = 0.0093 seconds
merge sort + insertion_sort (size = 100) = 0.011117 seconds
merge sort + insertion_sort (size = 250) = 0.027705 seconds
merge sort + insertion_sort (size = 500) = 0.050494 seconds
------ END OF CASE- 2 ------


------ STARTING CASE- 3 ------ [ Input Size = 6000 ]
insertion sort = 0.86935 seconds
merge sort = 0.018749 seconds
merge sort + insertion_sort (size = 10) = 0.013192 seconds
merge sort + insertion_sort (size = 25) = 0.013598 seconds
merge sort + insertion_sort (size = 50) = 0.016025 seconds
merge sort + insertion_sort (size = 100) = 0.021048 seconds
merge sort + insertion_sort (size = 250) = 0.033279 seconds
merge sort + insertion_sort (size = 500) = 0.059811 seconds
------ END OF CASE- 3 ------


------ STARTING CASE- 4 ------ [ Input Size = 8000 ]
insertion sort = 1.566274 seconds
merge sort = 0.025594 seconds
merge sort + insertion_sort (size = 10) = 0.017992 seconds
merge sort + insertion_sort (size = 25) = 0.018349 seconds
merge sort + insertion_sort (size = 50) = 0.019576 seconds
merge sort + insertion_sort (size = 100) = 0.024405 seconds
merge sort + insertion_sort (size = 250) = 0.055694 seconds
merge sort + insertion_sort (size = 500) = 0.102565 seconds
------ END OF CASE- 4 ------


------ STARTING CASE- 5 ------ [ Input Size = 10000 ]
insertion sort = 2.421797 seconds
merge sort = 0.033471 seconds
merge sort + insertion_sort (size = 10) = 0.022663 seconds
merge sort + insertion_sort (size = 25) = 0.024298 seconds
merge sort + insertion_sort (size = 50) = 0.026851 seconds
merge sort + insertion_sort (size = 100) = 0.034553 seconds
merge sort + insertion_sort (size = 250) = 0.050001 seconds
merge sort + insertion_sort (size = 500) = 0.08531 seconds
------ END OF CASE- 5 ------


------ STARTING CASE- 6 ------ [ Input Size = 12000 ]
insertion sort = 3.487232 seconds
merge sort = 0.041774 seconds
merge sort + insertion_sort (size = 10) = 0.028485 seconds
merge sort + insertion_sort (size = 25) = 0.030319 seconds
merge sort + insertion_sort (size = 50) = 0.035072 seconds
merge sort + insertion_sort (size = 100) = 0.045909 seconds
merge sort + insertion_sort (size = 250) = 0.069218 seconds
merge sort + insertion_sort (size = 500) = 0.12175 seconds
------ END OF CASE- 6 ------


------ STARTING CASE- 7 ------ [ Input Size = 14000 ]
insertion sort = 4.75054 seconds
merge sort = 0.04913 seconds
merge sort + insertion_sort (size = 10) = 0.033935 seconds
merge sort + insertion_sort (size = 25) = 0.034279 seconds
merge sort + insertion_sort (size = 50) = 0.037331 seconds
merge sort + insertion_sort (size = 100) = 0.042495 seconds
merge sort + insertion_sort (size = 250) = 0.091504 seconds
merge sort + insertion_sort (size = 500) = 0.162114 seconds
------ END OF CASE- 7 ------


------ STARTING CASE- 8 ------ [ Input Size = 16000 ]
insertion sort = 6.213865 seconds
merge sort = 0.055599 seconds
merge sort + insertion_sort (size = 10) = 0.039368 seconds
merge sort + insertion_sort (size = 25) = 0.040357 seconds
merge sort + insertion_sort (size = 50) = 0.043254 seconds
merge sort + insertion_sort (size = 100) = 0.051887 seconds
merge sort + insertion_sort (size = 250) = 0.115063 seconds
merge sort + insertion_sort (size = 500) = 0.209497 seconds
------ END OF CASE- 8 ------


------ STARTING CASE- 9 ------ [ Input Size = 18000 ]
insertion sort = 8.240016 seconds
merge sort = 0.06545 seconds
merge sort + insertion_sort (size = 10) = 0.045546 seconds
merge sort + insertion_sort (size = 25) = 0.046864 seconds
merge sort + insertion_sort (size = 50) = 0.050393 seconds
merge sort + insertion_sort (size = 100) = 0.061606 seconds
merge sort + insertion_sort (size = 250) = 0.08762 seconds
merge sort + insertion_sort (size = 500) = 0.14387 seconds
------ END OF CASE- 9 ------


------ STARTING CASE- 10 ------ [ Input Size = 20000 ]
insertion sort = 9.641744 seconds
merge sort = 0.07346 seconds
merge sort + insertion_sort (size = 10) = 0.053326 seconds
merge sort + insertion_sort (size = 25) = 0.053757 seconds
merge sort + insertion_sort (size = 50) = 0.057143 seconds
merge sort + insertion_sort (size = 100) = 0.071182 seconds
merge sort + insertion_sort (size = 250) = 0.103872 seconds
merge sort + insertion_sort (size = 500) = 0.17565 seconds
------ END OF CASE- 10 ------


Related Solutions

out of the following four: 1.Bubble sort 2. Insertion sort 3. Quicksort 4. Mergesort a. Which...
out of the following four: 1.Bubble sort 2. Insertion sort 3. Quicksort 4. Mergesort a. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is random? b. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is 90% sorted? c. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is reverse sorted? d. Which sorting methods perform best and...
out of the following four: 1.Bubble sort 2. Insertion sort 3. Quicksort 4. Mergesort a. Which...
out of the following four: 1.Bubble sort 2. Insertion sort 3. Quicksort 4. Mergesort a. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is random? b. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is 90% sorted? c. Which sorting methods perform best and worst for data sizes ≥ 25,000 when the input data is reverse sorted? d. Which sorting methods perform best and...
c++ Run the following sorting algorithms: 1. Bubble sort 2. Insertion sort 3. Quicksort 4. Mergesort...
c++ Run the following sorting algorithms: 1. Bubble sort 2. Insertion sort 3. Quicksort 4. Mergesort Under the following scenarios for input data: 1. Uniform random 2. Almost sorted (90% sorted – 1 in 10 is out of place) 3. Reverse sorted On data of sizes 5,000, 10,000, … in increments of 5,000 up to …, 50,000 -Attach a screenshot of a program compilation below -Attach a screenshot of a successful program run below -Attach a graph (either line graph...
What is the runtime for quick sort?
What is the runtime for quick sort?
The Binary Insertion Sort Algorithm is a variation of the Insertion Sort Algorithm that uses a...
The Binary Insertion Sort Algorithm is a variation of the Insertion Sort Algorithm that uses a binary search technique rather than a linear search technique to insert the ith element in the correct place among the previously sorted elements. (i) Express the Binary Insertion Sort Algorithm in pseudocode. (ii) Compare the number of comparisons of elements used by the Insertion Sort Algorithm and the Binary Insertion Sort Algorithm when sorting the list (7,4,3,8,1,5,4,2). (iii) Show that the Insertion Sort Algorithm...
Sorting – Insertion Sort Sort the list 0, 3, -10,-2,10,-2 using insertion sort, ascending. Show the...
Sorting – Insertion Sort Sort the list 0, 3, -10,-2,10,-2 using insertion sort, ascending. Show the list after each outer loop. Do his manually, i.e. step through the algorithm yourself without a computer. This question is related to data structure and algorithm in javascript (.js). Please give your answer keeping this in your mind.
give a good explanation of Bubble sort, Insertion sort, Selection sort, and Quicksort.
give a good explanation of Bubble sort, Insertion sort, Selection sort, and Quicksort.
Sort the following set of numbers using bubble sort, insertion sort, and selection sort. Show the...
Sort the following set of numbers using bubble sort, insertion sort, and selection sort. Show the process step-by-step, and find the time complexity in Big-O notation for each method. For sorting, use ascending order. 49, 7, 60, 44, 18, 105
Add bubble sort, radix sort, insertion sort, and merge sort to the code provided. Import a...
Add bubble sort, radix sort, insertion sort, and merge sort to the code provided. Import a data set (txt file) then do the sorting algorithm to measure how long it took and how many movements occurred. Please write codes in C++ Here's data set (should be stored in txt file) 7426 4524 4737 9436 3997 2757 6288 5414 9590 5968 6638 3199 9514 1541 9866 2144 6731 911 2171 6135 6437 912 9417 2662 6606 6349 707 2890 5386 9718...
In this project you will implement and experiment with three different sorting algorithms: Insertion Sort, Selection...
In this project you will implement and experiment with three different sorting algorithms: Insertion Sort, Selection sort and Bubble Sort. The objective of this project is to understand the relation between the theoretical asymptotic complexities (Big-O) computed in class and the actual running times for different kinds of input. The enclosed source file main.cpp contains a program that reads two inputs: a letter specifying which sorting algorithm to use (I for InsertionSort , S for SelectionSort and B for BubbleSort),...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT