Question

In: Physics

A double-slit is illuminated with monochromatic light in the air and it turns out that the...

A double-slit is illuminated with monochromatic light in the air and it turns out that the first order minima occur at angles ∓35.09 ° relative to the reference line from the double slit to central max. If the double slit is lowered into a transparent liquid and illuminated with the same light, the first order minima occur at the angles ± 19.36 °. Decide the refractive index of the liquid?

Solutions

Expert Solution

Equation for first order minimum for interference

sin=/2d

=angular width

=wavelength

d=distance between slits

that is sin (as d is same in 2 cases)

for first case =35.09 and let wavelength=

sin35.09     ...................(1)

in second case new wavelength

'=/n where n= refractive index of the liquid (medium)

=19.36

Therefore

sin19.36    /n....(2)

dividing equation (1) by (2)

sin35.09/sin19.36=/(/n)=n

n=sin35.09/sin19.36=1.734=refractive index of liquid


Related Solutions

Monochromatic coherent light with a wavelength of 632.8nm is incident on a double slit system with...
Monochromatic coherent light with a wavelength of 632.8nm is incident on a double slit system with a slit separation of 0.15mm. What is the separation between the third bright spot from the center and the seventh bright spot from the center?
A double slit separation is 3 mm and is illuminated by a white light. A screen...
A double slit separation is 3 mm and is illuminated by a white light. A screen is placed 3.0 m away to observe the interference pattern. a) What is the angular separation of the 2nd order red (λ=700 nm) and 3rd order violet (λ=400 nm) bright fringe? b) How high is the 4th order fringe for the yellow color (λ=589 nm) on the screen? c) Is it possible to adjust the slit separation so that for the 1st order red...
1) Upon passing monochromatic light (‘one color’ or one wavelength) through a double-slit, a series of...
1) Upon passing monochromatic light (‘one color’ or one wavelength) through a double-slit, a series of equally-spaced bright fringes appears on a screen. This spacing of the fringes depends on the wavelength of the monochromatic light, the distance to the screen, and the spacing between these two slits. Upon passing this same monochromatic light through this same double-slit with the same distance to the screen, only now with the entire apparatus completely submerged in water, does the fringe spacing increase,...
Problem 3: Double-slit experiment The monochromatic light diffracts on the two slits which are 0.1 mm...
Problem 3: Double-slit experiment The monochromatic light diffracts on the two slits which are 0.1 mm apart (their size is negligible) and produces an interference pattern on the wall which is 3 m far from the apparatus. a) The distance between the central bright fringe and the first off-center bright fringe is 2 cm. What is the wavelength of the light? Which color is it? b) How many bright and dark fringes could we see on the wall? c) We...
Question: Light, with a wavelength of 500 nm in air, strikes directly on a double slit,...
Question: Light, with a wavelength of 500 nm in air, strikes directly on a double slit, spaced 440 micrometer apart. The resulting interference pattern is observed on a screen that is 2.0 meters away. Afterwards, the double slit apparatus is then submerged into oil, which has an index of refraction of 1.58.  Assume that the diffraction effects are negligible. a)Calculate the distance between the first two adjacent bright fringes on the screen, when set up in air. b)Determine the frequency of...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an...
In a double-slit experiment, light with a wavelength λ passes through a double-slit and forms an interference pattern on the screen at a distance L from the slits. What statement is true for the resulting interference pattern if the frequency of the light increases? OPTIONS: The distance between maxima stays the same.T he distance between maxima increases. The distance between maxima decreases. Not enough information given.
A beam of monochromatic green light is diffracted by a slit of width 0.500 mm. The...
A beam of monochromatic green light is diffracted by a slit of width 0.500 mm. The diffraction pattern forms on a wall 2.06 m beyond the slit. The distance between the positions of zero intensity on both sides of the central bright fringe is 5.10 mm. Calculate the wavelength of the light.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit in mm?  
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm.
A 0.50-mm-wide slit is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m behind the slit?
A particular metal illuminated by a monochromatic light source at 1.5 times the cutoff frequency fc...
A particular metal illuminated by a monochromatic light source at 1.5 times the cutoff frequency fc (in an evacuated chamber) emits photoelectrons with a maximum kinetic energy (Kmax) = 1.45 eV. For reference, Planck’s constant is 4.136 x 10-15 eV·s, 1 nm = 10-9 m, 1 eV = 1.60 x 10-19 J, and the speed of light is 3.00 x 108 m/s. (a) What is the work function (Φ) of this metal in eV? Enter your answer in the box....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT