In: Computer Science
Write code for O(n) worst-case algorithm that verifies that a
tree is actually an AVL tree by detecting imbalance. If imbalance
is true, then call the proper rotation function provided in the
lecture slides to fix the imbalance condition.
1. Must read AVLNode data from a text file
2. Create a Book Object; and an AVL node object to be inserted into
the AVL tree
3. At each insert, detect imbalance and fix the AVL tree
4. Report each imbalance detection and the node where it occurred;
and output the
message:
Output: Imbalance occurred at inserting ISBN 12345;
fixed in LeftRight Rotation
Imbalance occurred at inserting ISBN 87654; fixed in
Left Rotation
Imbalance occurred at inserting ISBN 974321; fixed in
RightLeft Rotation
class AVLNode
{
int key; (ISBN number)
Book value; //create a class representing
a book with minimum attributes
int height;
AVLNode leftPtr;
AVLNode rightPtr;
}
You must verify the AVL balance condition at each insert and detect and fix imbalance, output result of each insertion. A null node is considered AVL property of height -1.
Bonus (20%): Create a random binary tree and verify BST property and AVL balance condition. Do not hard code the tree inside the code.
class Book {
int id;
}
class AVLNode {
Book value;
int key, height;
AVLNode leftPtrPtr, rightPtrPtr;
// A utility function to get height of the tree
int height(AVLNode N) {
if (N == null)
return 0;
return N.height;
}
// A utility function to get maximum of two integers
int max(int a, int b) {
return (a > b) ? a : b;
}
// A utility function to rightPtr rotate subtree rooted with y
// See the diagram given above.
AVLNode rightPtrRotate(AVLNode y) {
AVLNode x = y.leftPtrPtr;
AVLNode T2 = x.rightPtrPtr;
// Perform rotation
x.rightPtrPtr = y;
y.leftPtrPtr = T2;
// Update heights
y.height = max(height(y.leftPtrPtr), height(y.rightPtrPtr)) + 1;
x.height = max(height(x.leftPtrPtr), height(x.rightPtrPtr)) + 1;
// Return new root
return x;
}
// A utility function to leftPtr rotate subtree rooted with x
// See the diagram given above.
AVLNode leftPtrRotate(AVLNode x) {
AVLNode y = x.rightPtrPtr;
AVLNode T2 = y.leftPtrPtr;
// Perform rotation
y.leftPtrPtr = x;
x.rightPtrPtr = T2;
// Update heights
x.height = max(height(x.leftPtr), height(x.rightPtr)) + 1;
y.height = max(height(y.leftPtr), height(y.rightPtr)) + 1;
// Return new root
return y;
}
// Get Balance factor of node N
int getBalance(AVLNode N) {
if (N == null)
return 0;
return height(N.leftPtr) - height(N.rightPtr);
}
AVLNode insert(AVLNode node, int key) {
/* 1. Perform the normal BST insertion */
if (node == null)
return (new AVLNode(key));
if (key < node.key)
node.leftPtr = insert(node.leftPtr, key);
else if (key > node.key)
node.rightPtr = insert(node.rightPtr, key);
else // Duplicate keys not allowed
return node;
/* 2. Update height of this ancestor node */
node.height = 1 + max(height(node.leftPtr),
height(node.rightPtr));
/* 3. Get the balance factor of this ancestor
node to check whether this node became
unbalanced */
int balance = getBalance(node);
// If this node becomes unbalanced, then there
// are 4 cases leftPtr leftPtr Case
if (balance > 1 && key < node.leftPtr.key)
return rightPtrRotate(node);
// rightPtr rightPtr Case
if (balance < -1 && key > node.rightPtr.key)
return leftPtrRotate(node);
// leftPtr rightPtr Case
if (balance > 1 && key > node.leftPtr.key) {
node.leftPtr = leftPtrRotate(node.leftPtr);
return rightPtrRotate(node);
}
// rightPtr leftPtr Case
if (balance < -1 && key < node.rightPtr.key) {
node.rightPtr = rightPtrRotate(node.rightPtr);
return leftPtrRotate(node);
}
/* return the (unchanged) node pointer */
return node;
}
// A utility function to print preorder traversal
// of the tree.
// The function also prints height of every node
void preOrder(AVLNode node) {
if (node != null) {
System.out.print(node.key + " ");
preOrder(node.leftPtr);
preOrder(node.rightPtr);
}
}
public static void main(String[] args) {
AVLNode tree = new AVLNode();
/* Constructing tree given in the above figure */
tree.root = tree.insert(tree.root, 12345);
tree.root = tree.insert(tree.root, 87654);
tree.root = tree.insert(tree.root, 974321);
System.out.println("Imbalance occurred at inserting ISBN"
+tree.preOrder(tree.root)+ " fixed in LeftRight Rotation");
System.out.println("Imbalance occurred at inserting ISBN" +tree.preOrder(tree.root)+ " fixed in Left Rotation");
System.out.println("Imbalance occurred at inserting ISBN" +tree.preOrder(tree.root)+ " fixed in RightLeft Rotation");
}
}