Question

In: Advanced Math

Homogenous problem. Change of variable (x-y+3)dx + (x+y-1) dy = 0

Homogenous problem. Change of variable

(x-y+3)dx + (x+y-1) dy = 0

Solutions

Expert Solution


Related Solutions

Solve (1+e^x)dy/dx+(e^x)y=3x^2+1 Solve (x^3+y^3)dx+3xy^2 dy = 0 Solve (y-cos y)dx + (xsiny+x)dy = 0 Solve (1+ln...
Solve (1+e^x)dy/dx+(e^x)y=3x^2+1 Solve (x^3+y^3)dx+3xy^2 dy = 0 Solve (y-cos y)dx + (xsiny+x)dy = 0 Solve (1+ln x +y/x)dx = (1-lnx)dy Solve (y^2+yx)dx - x^2dy =0 Solve (x^2+2y^2)dx = xydy Solve Bernoulli's Equation x dy/dx + 2y = (x^4)(e^x)(y^2) Solve Bernoulli's Equation (1+x^2) dy/dx = 2xy +(e^x)(y^2) Solve IVP (3e^(x^2))dy + (xy^2)dx=0 ; y(1) = 2 Solve IVP dy/dx -2xy = e^(x^2) ; y(0)=0 Solve IVP (x^2+y^2)dx+(2xy)dy=0; y(1)=1 6. Mixture Problem Initially 40 lb of salt is dissolved in a large...
d^2y/dx^2 − dy/dx − 3/4 y = 0, y(0) = 1, dy/dx(0) = 0, Convert the...
d^2y/dx^2 − dy/dx − 3/4 y = 0, y(0) = 1, dy/dx(0) = 0, Convert the initial value problem into a set of two coupled first-order initial value problems and find the exact solution to the differential equatiion
Solve these first-order Differential Equations using an integrating factor. 1. dy/dx+2xy=0 2. dy/dx-y=5 3. dy/dx+y=x 4....
Solve these first-order Differential Equations using an integrating factor. 1. dy/dx+2xy=0 2. dy/dx-y=5 3. dy/dx+y=x 4. (x)dy/dx+(x+1)y=3/x 5. (x^2)dy/dx=e^x-2xy
dy/dx+(y/2x)=(x/(y^3))
dy/dx+(y/2x)=(x/(y^3))
Solve the following DEs 1.) dy/dx + y =e^3x 2.) x^2y' +xy = 1 3,) x(dy/dx)-y...
Solve the following DEs 1.) dy/dx + y =e^3x 2.) x^2y' +xy = 1 3,) x(dy/dx)-y = x^2 sin(x) 4.) y' - 2y = e^2x, y(0) = 2 5.) cos(x)(dy/dx) + ysin(x) = 1, y(pi/4) = 0
Solve IVP for y(x): dy/dx + (3/x)y = 8y^4, y(1) = 1
Solve IVP for y(x): dy/dx + (3/x)y = 8y^4, y(1) = 1
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for...
A) Solve the initial value problem: 8x−4y√(x^2+1) * dy/dx=0 y(0)=−8 y(x)= B)  Find the function y=y(x) (for x>0 ) which satisfies the separable differential equation dy/dx=(10+16x)/xy^2 ; x>0 with the initial condition y(1)=2 y= C) Find the solution to the differential equation dy/dt=0.2(y−150) if y=30 when t=0 y=
Where y=y(x) solves... (5.9y-(23.6)x)dx+(5.9x-1)dy=0   y(0.27)=2.15 (5xy-(-1.1)ye^x -1)dx+(2.5x^2-(-1.1)e^x)dy=0     y(1.2)=2.3
Where y=y(x) solves... (5.9y-(23.6)x)dx+(5.9x-1)dy=0   y(0.27)=2.15 (5xy-(-1.1)ye^x -1)dx+(2.5x^2-(-1.1)e^x)dy=0     y(1.2)=2.3
dy/dx + y/x \ x3y2
dy/dx + y/x \ x3y2
Solve the following initial value problem d2y/dx2−6dy/dx+25y=0,y(0)=0, dy/dx(0)=1.
Solve the following initial value problem d2y/dx2−6dy/dx+25y=0,y(0)=0, dy/dx(0)=1.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT