In: Statistics and Probability
variable1 | variable2 |
-0.21582 | 0.89369 |
0.56997 | -0.72620 |
-0.54850 | -0.09185 |
-0.12385 | 0.50086 |
0.06975 | -0.73607 |
0.16327 | 0.88498 |
-0.72595 | -0.27512 |
0.22500 | 0.62647 |
-0.40463 | 0.92432 |
0.67652 | 0.56368 |
-0.82322 | 0.73005 |
0.06747 | -0.74824 |
0.74055 | 0.79412 |
-0.71577 | -0.04509 |
-0.82231 | -0.70951 |
-0.47603 | 0.01573 |
0.58094 | 0.51169 |
-0.58573 | 0.10376 |
0.19003 | -0.90089 |
-0.49528 | 0.04767 |
0.93083 | -0.16886 |
0.61389 | -0.65529 |
-0.91742 | 0.25296 |
-0.60957 | -0.24747 |
Correlation is used to discover relationships between variables. Evaluate correlation between the variables in the Data above. What is the correlation?
a. 0.310
b. -0.008
c. None of the answers are correct
d. -0.991
e. 0.984
Answer: -0.008
You can get the correlation by using excel<data<megastat<regression.
or you can use the data<megastat<correlation matrix.
This will give you same r that is correlation.
The output is as follows:
Regression Analysis | ||||||
r² | 0.000 | |||||
r | -0.008 | |||||
Std. Error | 0.616 | |||||
n | 24 | |||||
k | 1 | |||||
Dep. Var. | variable2 | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 0.0005 | 1 | 0.0005 | 0.00 | .9715 | |
Residual | 8.3494 | 22 | 0.3795 | |||
Total | 8.3498 | 23 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=22) | p-value | 95% lower | 95% upper |
Intercept | 0.0635 | |||||
variable1 | -0.0080 | 0.2221 | -0.036 | .9715 | -0.4686 | 0.4526 |
Please do the comment for any doubt or clarification.