Question

In: Physics

Consider an object that begins rolling from rest at the top of an inclined plane. Assume...

Consider an object that begins rolling from rest at the top of an inclined plane. Assume that there is no slipping between the object and the ramp, and that the bottom of the ramp is defined as h = 0.

  1. What form(s) of energy does the object have at the top of the ramp, before it begins moving?

    (a) Gravitational Potential (c) Rotational Kinetic (b) Translational Kinetic (d) Thermal

  2. What form(s) of energy does the object have when it has just reached the bottom of the ramp? (a) Gravitational Potential (c) Rotational Kinetic

    (b) Translational Kinetic (d) Thermal

  3. Using your answers to #1 & #2, write an equation that describes energy conservation for the object.

  4. How is the angular velocity of rotation, ω, related to the center of mass velocity, v, for an object with radius r?

    (a) ω=v·r (b) ω=v·r2 (c) ω=v/r (d) ω=v2/r

  5. Using your answers to #3 & #4, solve for the final velocity of the rolling object as a function of its initial height and other physical parameters.

Solutions

Expert Solution


Related Solutions

Object 1 is held at rest at the top of a rough inclined plane of length...
Object 1 is held at rest at the top of a rough inclined plane of length ? = 1.5 ? and angle ? = 25∘. When it is released, it moves with an acceleration of 2 ? down the plane. a) Find the coefficient of kinetic friction ?? of the inclined plane. (??) b) Find the speed of Object 1 when it reaches the bottom of the plane. (??) At the bottom of the inclined plane, Object 1 arrives at...
A 3.4- cm-radius ball rolls down an inclined plane from rest at the top. The angular...
A 3.4- cm-radius ball rolls down an inclined plane from rest at the top. The angular acceleration of the rolling ball about its center is 275 rad/s2, and its angular speed at the bottom is 58.4 rad/s. How long is the plane?
A 4.3- cm-radius ball rolls down an inclined plane from rest at the top. The angular...
A 4.3- cm-radius ball rolls down an inclined plane from rest at the top. The angular acceleration of the rolling ball about its center is 245 rad/s2, and its angular speed at the bottom is 44.4 rad/s. How long is the plane?
A skier starts from rest at the top of a hill that is inclined at 10.8°...
A skier starts from rest at the top of a hill that is inclined at 10.8° with respect to the horizontal. The hillside is 245 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
A skier starts from rest at the top of a hill that is inclined at 10.9°...
A skier starts from rest at the top of a hill that is inclined at 10.9° with respect to the horizontal. The hillside is 190 m long, and the coefficient of friction between snow and skis is 0.0750. At the bottom of the hill, the snow is level and the coefficient of friction is unchanged. How far does the skier glide along the horizontal portion of the snow before coming to rest?
A 4 kg block is placed at the top of an inclined plane. The plane is...
A 4 kg block is placed at the top of an inclined plane. The plane is 2.5 meters long and inclined at 34°. The coefficient of kinetic friction between the block and plane is 0.27. The block slides the 2.0 meters down the ramp. What speed does it have at the bottom?
A hollow sphere is released from the top of an inclined plane of inclination theta. (a)...
A hollow sphere is released from the top of an inclined plane of inclination theta. (a) What should be the minimum coefficient of friction between the plane and the sphere to prevent it from sliding? (b) Find the kinetic energy of the sphere as it moves down a length l on the incline if the friction coefficient is half the value calculated in part (a). Please show all steps
A brick of mass m is initially at rest at the peak of an inclined plane,...
A brick of mass m is initially at rest at the peak of an inclined plane, which has a height of 6.4 m and has an angle of θ = 18° with respect to the horizontal. After being released, it is found to be moving at v = 0.15 m/s a distance d after the end of the inclined plane as shown. The coefficient of kinetic friction between the brick and the plane is μp = 0.1, and the coefficient...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 35.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.500 and the constant of the spring is k = 6000 N/m. What is the net impulse exerted on...
A 25.0-kg crate is initially at rest at the top of a ramp that is inclined...
A 25.0-kg crate is initially at rest at the top of a ramp that is inclined at an angle θ = 30.0 ◦ above the horizontal. You release the crate and it slides 1.25 m down the ramp before it hits a spring attached to the bottom of the ramp. The coefficient of kinetic friction between the crate and the ramp is 0.400 and the constant of the spring is k = 5000 N/m. How far does the crate compress...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT