Question

In: Physics

. Consider a uranium nucleus to be sphere of radius R=7.4×10−15mR=7.4×10−15m with a charge of 92e...

.

Consider a uranium nucleus to be sphere of radius R=7.4×10−15mR=7.4×10−15m with a charge of 92e distributed uniformly throughout its volume. (a) What is the electric force exerted on an electron when it is 3.0×10−15m3.0×10−15m from the center of the nucleus? (b) What is the acceleration of the electron at this point?

I need a hand written and explained solution

Solutions

Expert Solution

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.


Related Solutions

A solid sphere of charge is centered at the origin and has radius R = 10...
A solid sphere of charge is centered at the origin and has radius R = 10 cm. Instead of being uniformly charged, the charge density varies with radial position: ρ(r)=ρ0ar. Take a=5.1 m and ρ0=3.7 C/m3. What is the total charge of the sphere? What is the electric flux through a sherical surface of radius R/2 that is concentric with the charged sphere? What is the flux through a spherical surface of radius 2R that surrounds the charged sphere, but...
Consider a hollow, infinite sphere of radius R. the hollow space is free of charge, but...
Consider a hollow, infinite sphere of radius R. the hollow space is free of charge, but a surface charge sigma = sigma not cos theta exists on the inside surface of the conductor at s =R. Can this sphere be a conductor? ( I.e, can you induce this charge on a conducting surface somehow)
A charge Q is distributed in the volume of a sphere of radius R with a...
A charge Q is distributed in the volume of a sphere of radius R with a density non-uniform load cubic p = B (R - r) , where b is a constant and r is the distance to the center of the sphere determine: The values ​​of the potential in the center and on the surface of the sphere.
Determine the radius r of a sphere centered on the nucleus within which the probability of...
Determine the radius r of a sphere centered on the nucleus within which the probability of finding the electron for the ground state of hydrogen is 53 % . Determine the radius r of a sphere centered on the nucleus within which the probability of finding the electron for the ground state of hydrogen is 95 % . Determine the radius r of a sphere centered on the nucleus within which the probability of finding the electron for the ground...
consider a charge Q distributed through out a sphere of radius R with a density: rho=...
consider a charge Q distributed through out a sphere of radius R with a density: rho= A(R-r) where rho is in Coulombs/m^3 0<r<R determine the constant A in terms of Q and R Calculate the electric field inside and outside of the sphere
Consider a conducting sphere of radius R carrying a net charge Q. a). Using Gauss’s law...
Consider a conducting sphere of radius R carrying a net charge Q. a). Using Gauss’s law in integral form and the equation |E| = σ/ε0 for conductors, nd the surface charge density on the sphere. Does your answer match what you expect? b). What is the electrostatic self energy of this sphere? c). Assuming the sphere has a uniform density ρ, what is the gravitational self energy of the sphere? (That is, what amount of gravitational energy is required/released when...
A sphere of radius R has a radius dependent charge density ρ = B · r3...
A sphere of radius R has a radius dependent charge density ρ = B · r3 in terms of R and B. Calculate the potential as a function of r from the center of the sphere.
A nonconducting sphere of radius R carries a volume charge density that is proportional to the...
A nonconducting sphere of radius R carries a volume charge density that is proportional to the distance from the center: Rho=Ar for r<=R, where A is a constant; Rho = 0 for r>R a) Find the total charge on the sphere b) Find the electric field inside the charge distribution. c) Find the electric field outside the charge distribution. d) Sketch the graph of E versus r.
A sphere of radius R is charged with a charge Q. 1. What is the potential...
A sphere of radius R is charged with a charge Q. 1. What is the potential outside of the sphere at distance r from the center of the sphere? 2. what is the electric potential at the center of the sphere
A solid insulating sphere of radius R has a charge of Q, (Q > 0) placed...
A solid insulating sphere of radius R has a charge of Q, (Q > 0) placed on it, uniformly distributed throughout its volume. Surrounding the sphere is a spherical conducting shell with inner radius 2R and outer radius 3R and has a charge of −2Q placed on it. The sphere and the shell share the same center. 1A: Determine the magnitude of the electric field, E(r), where r is the distance from the center of the sphere 1B: Determine the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT