Question

In: Physics

Gamma Ray Absorption A gamma ray with energy E, hits a stationary nucleus of mass M...

Gamma Ray Absorption

A gamma ray with energy E, hits a stationary nucleus of mass M and is completely absorbed. In terms of E, and M, find expressions for the following quantities.

a. The momentum of the nucleus after absorbing the gamma

b. The total relativistic energy of the nucleus after absorbing the gamma

c. The rest mass energy of the nucleus after absorbing the gamma

d. The kinetic energy of the nucleus after absorbing the gamma

Solutions

Expert Solution


Related Solutions

A gamma ray of exactly 1.022 MeV produces an e+ and e-. The e+ and e-...
A gamma ray of exactly 1.022 MeV produces an e+ and e-. The e+ and e- have zero momentum. a) What is the momentum of the gamma ray? b) Where does the momentum go to keep conservation of momentum.
The gamma ray was fired with a Mev 7 energy, and it fell on a lead...
The gamma ray was fired with a Mev 7 energy, and it fell on a lead barrier and stopped inside it behind the barrier. There was a gamma ray spectrometer. As a result of this interaction, the spectrometer did not record the 7 Mev energy, but recorded a photovoltaic energy worth Kev 511. From these data, answer the questions. A- What is the interaction between the photon and the lead barrier? B- What are the particles resulting from this reaction...
A man is playing tennis game. He hits a stationary ball of mass 50 g with...
A man is playing tennis game. He hits a stationary ball of mass 50 g with his racquet. Interpret the energy conversions taking place when he hits ball with racquet. The average force acting on it is 600 N, so that the ball moves with a velocity of 60 m/s .Can you predict the time of hit of the ball when it leaves the racquet using given data? How can you find the change in kinetic energy of moving ball?...
IP An α particle with a kinetic energy of 0.45 MeV approaches a stationary gold nucleus....
IP An α particle with a kinetic energy of 0.45 MeV approaches a stationary gold nucleus. A)What is the speed of the α particle? (To obtain the mass of an alpha particle, subtract the mass of two electrons from the mass of 4/2He. ) Express your answer using two significant figures. v= ___ m/s B)What is the distance of closest approach between the αα particle and the gold nucleus? d= ___pm C)If this same αα particle were fired at a...
Problem 1: The energy E of a particle of mass m moving at speed v is...
Problem 1: The energy E of a particle of mass m moving at speed v is given by: E2 = m2 c4 + p2 c2 (1) p=γmv (2) 1 γ = 1−v2/c2 (3) This means that if something is at rest, it’s energy is mc2. We can define a kinetic energy to be the difference between the total energy of an object given by equation (1) and the rest energy mc2. What would be the kinetic energy of a baseball...
Consider a stationary solution of the Schrodinger Equation with positive energy E for a particle with...
Consider a stationary solution of the Schrodinger Equation with positive energy E for a particle with mass m in the following one-dimensional potential: V (x) = 0 for |x| > a and V (x) = −V0 for |x| ≤ a with V0 > 0. (a) Calculate the transmission and reflection probabilities. (b) Show that the transmission probability is unity for some values of the energy.
Nuclear Binding Energy a)Calculate the mass defect of the helium nucleus 52He. The mass of neutral...
Nuclear Binding Energy a)Calculate the mass defect of the helium nucleus 52He. The mass of neutral 52He is given by MHe=5.012225amu. Express your answer in atomic mass units to four significant figures. b)Calculate the binding energy E of the helium nucleus 52He (1eV=1.602×10−19J). Express your answer in millions of electron volts to four significant figures. c)Calculate the binding energy per nucleon of the helium nucleus 52He. Express your answer in millions of electron volts to four significant figures.
3. Suppose a beam of particles of mass m and kinetic energy E is incident from...
3. Suppose a beam of particles of mass m and kinetic energy E is incident from the left on a potential well given by: U(x) = ?U0 (for 0 < x < L where U0 > 0) U(x) = 0 ( otherwise ) (a) What is the Schrodinger Wave Equation (S.W.E.) for the region x < 0 ? (Hint: include both incident and reflected waves) (b) What is the S.W.E. for the region x > L ? (Hint: this will...
A particle with mass m and energy E is moving in one-dimension from right to legt....
A particle with mass m and energy E is moving in one-dimension from right to legt. It is incident on the step potential V(x)=0 for x<0 nd V(x)=V0 for x>0 where E>V0>0. Find the reflection coefficient R in terms of m,E and V0, and h-bar.
Nuclear binding energy Part D Calculate the mass defect of the helium nucleus 52He. The mass...
Nuclear binding energy Part D Calculate the mass defect of the helium nucleus 52He. The mass of neutral 52He is given by MHe=5.012225amu. Express your answer in atomic mass units to four significant figures.   amu   SubmitHintsMy AnswersGive UpReview Part Part E Calculate the binding energy E of the helium nucleus 52He (1eV=1.602×10−19J). Express your answer in millions of electron volts to four significant figures. E =   MeV   SubmitHintsMy AnswersGive UpReview Part Part F Calculate the binding energy per nucleon of...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT