Question

In: Physics

Consider a stationary solution of the Schrodinger Equation with positive energy E for a particle with...

Consider a stationary solution of the Schrodinger Equation with positive energy E for a particle with mass m in the following one-dimensional potential: V (x) = 0 for |x| > a and V (x) = −V0 for |x| ≤ a with V0 > 0. (a) Calculate the transmission and reflection probabilities. (b) Show that the transmission probability is unity for some values of the energy.

Solutions

Expert Solution


Related Solutions

Solve the time independent schrodinger equation for a particle confined to a mobius strip.
Solve the time independent schrodinger equation for a particle confined to a mobius strip.
1. Write the Schrodinger equation for particle on a ring, and rearrange it until you have...
1. Write the Schrodinger equation for particle on a ring, and rearrange it until you have the following: ? 2? ??2 = − 2?? ℏ 2 ? … a) Assuming that ?? 2 = 2?? ℏ 2 , (where ml is a quantum number and has nothing to do with mass), show that the following is a solution for the Schrodinger equation you obtained: ?(?) = ? ? ????… b)Now think about bounds of variable ?. Using that argue that...
1. A particle satisfying the time-independent Schrodinger equation must have a) an eigenfunction that is normalized....
1. A particle satisfying the time-independent Schrodinger equation must have a) an eigenfunction that is normalized. b) a potential energy that is independent of location. c) a de Broglie wavelength that is independent of location d) a total energy that is independent of location. Correct answer is C but I need detailed explanation also explain each point why they are false
Use the Schrodinger equation solution of the H atom corresponding to its wave function for the...
Use the Schrodinger equation solution of the H atom corresponding to its wave function for the 3dxy orbital to explain why this orbital has no radial node. Questions to consider: (j) What is the value of the wave function and thus the radial part of the function at a node? (ii) What factor of the radial part of the wave function, containing r, can equal your value in (i) and thus allow you to obtain a value for r?
IP An α particle with a kinetic energy of 0.45 MeV approaches a stationary gold nucleus....
IP An α particle with a kinetic energy of 0.45 MeV approaches a stationary gold nucleus. A)What is the speed of the α particle? (To obtain the mass of an alpha particle, subtract the mass of two electrons from the mass of 4/2He. ) Express your answer using two significant figures. v= ___ m/s B)What is the distance of closest approach between the αα particle and the gold nucleus? d= ___pm C)If this same αα particle were fired at a...
Determine the Time-Dependent Schrodinger Equation (TDSE) from the classical non-relativistic expression for the energy of a...
Determine the Time-Dependent Schrodinger Equation (TDSE) from the classical non-relativistic expression for the energy of a particle and de Broglie’s claim that all particles can be represented as waves. (Important: Describe as much as possible and must use your own words to explain it.)
(a)What equation gives the wavelength of a particle? (b) What equation gives the energy of the...
(a)What equation gives the wavelength of a particle? (b) What equation gives the energy of the n=4 level of the hydrogen atom? In your equation write RH as RH. (c) What is the equation for the frequency of light when the Hydrogen atom makes a transition from n=4 to n=2? Evaluate everything but RH and h. Thank you so much!
1a. A positive particle of charge 5 C sits stationary [locked to the ground] 3.5 meters...
1a. A positive particle of charge 5 C sits stationary [locked to the ground] 3.5 meters from a negatively charged particle, with charge 2 C. How strong is the force the negative particle experiences? How does that compare if the negative particle is 7 meters away? Both charges have mass of 5 grams; how fast does the negatively charged particle accelerate in both cases? b. What force does a particle with a charge of +5 C, moving at 10 m/s...
Consider the nonhomogeneous equation y"-8y'+16y=e^4x cos x. Find a particular solution of the equation by the...
Consider the nonhomogeneous equation y"-8y'+16y=e^4x cos x. Find a particular solution of the equation by the method undetermined coefficients.
Suppose a solution to the time independent Schrodinger equation is multiplied by exp(-iEt/h-bar), thus making it...
Suppose a solution to the time independent Schrodinger equation is multiplied by exp(-iEt/h-bar), thus making it a solution to the time dependent Schrodinger equation. Will the product still be a solution to the time independent equation?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT