Question

In: Advanced Math

Let G be a group of order p am where p is a prime not dividing...

Let G be a group of order p

am where p is a prime not dividing m. Show the following

1. Sylow p-subgroups of G exist; i.e. Sylp(G) 6= ∅.
2. If P ∈ Sylp(G) and Q is any p-subgroup of G, then there exists g ∈ G such that Q 6
gP g−1

; i.e. Q is contained in some conjugate of P. In particular, any two Sylow p-
subgroups of G are conjugate in G.

3. np ≡ 1 (mod p) and np|m.

Solutions

Expert Solution


Related Solutions

Show that if G is a group of order np where p is prime and 1...
Show that if G is a group of order np where p is prime and 1 < n < p, then G is not simple. (Please do not use Sylow theorem)
(a) Let G be a finite abelian group and p prime with p | | G...
(a) Let G be a finite abelian group and p prime with p | | G |. Show that there is only one p - Sylow subgroup of G. b) Find all p - Sylow subgroups of (Z2500, +)
Throughout this question, let G be a finite group, let p be a prime, and suppose...
Throughout this question, let G be a finite group, let p be a prime, and suppose that H ≤ G is such that [G : H] = p. Let G act on the set of left cosets of H in G by left multiplication (i.e., g · aH = (ga)H). Let K be the set of elements of G that fix every coset under this action; that is, K = {g ∈ G : (∀a ∈ G) g · aH...
Let G be a finite group and p be a prime number.Suppose that pr divides the...
Let G be a finite group and p be a prime number.Suppose that pr divides the order of G. Show that G has a proper subgroup of order pr.
Let G be a nonabelian group of order 253=23(11), let P<G be a Sylow 23-subgroup and...
Let G be a nonabelian group of order 253=23(11), let P<G be a Sylow 23-subgroup and Q<G a Sylow 11-subgroup. a. What are the orders of P and Q. (Explain and include any theorems used). b. How many distinct conjugates of P and Q are there in G? n23? n11? (Explain, include any theorems used). c. Prove that G is isomorphic to the semidirect product of P and Q.
2. (a) Let p be a prime. Determine the number of elements of order p in...
2. (a) Let p be a prime. Determine the number of elements of order p in Zp^2 ⊕ Zp^2 . (b) Determine the number of subgroups of of Zp^2 ⊕ Zp^2 which are isomorphic to Zp^2 .
Let G be a group of order mn where gcd(m,n)=1 Let a and b be elements...
Let G be a group of order mn where gcd(m,n)=1 Let a and b be elements in G such that o(a)=m and 0(b)=n Prove that G is cyclic if and only if ab=ba
Let a be an element of a finite group G. The order of a is the...
Let a be an element of a finite group G. The order of a is the least power k such that ak = e. Find the orders of following elements in S5 a. (1 2 3 ) b. (1 3 2 4) c. (2 3) (1 4) d. (1 2) (3 5 4)
Prove that an abelian group G of order 2000 is the direct product PxQ where P...
Prove that an abelian group G of order 2000 is the direct product PxQ where P is the Sylow-2 subgroup of G, and Q the Sylow-5 subgroup of G. (So order of P=16 and order or Q=125).
Let G be finite with |G| > 1. If Aut(G) acts transitively on G − {e} then G ∼= (Z/(p))n for some prime p.
Let G be finite with |G| > 1. If Aut(G) acts transitively on G − {e} then G ∼= (Z/(p))n for some prime p.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT