Question

In: Advanced Math

Let G be a finite group and p be a prime number.Suppose that pr divides the...

Let G be a finite group and p be a prime number.Suppose that pr divides the order of G. Show that G has a proper subgroup of order pr.

Solutions

Expert Solution


Related Solutions

(a) Let G be a finite abelian group and p prime with p | | G...
(a) Let G be a finite abelian group and p prime with p | | G |. Show that there is only one p - Sylow subgroup of G. b) Find all p - Sylow subgroups of (Z2500, +)
Throughout this question, let G be a finite group, let p be a prime, and suppose...
Throughout this question, let G be a finite group, let p be a prime, and suppose that H ≤ G is such that [G : H] = p. Let G act on the set of left cosets of H in G by left multiplication (i.e., g · aH = (ga)H). Let K be the set of elements of G that fix every coset under this action; that is, K = {g ∈ G : (∀a ∈ G) g · aH...
Let G be a group of order p am where p is a prime not dividing...
Let G be a group of order p am where p is a prime not dividing m. Show the following 1. Sylow p-subgroups of G exist; i.e. Sylp(G) 6= ∅. 2. If P ∈ Sylp(G) and Q is any p-subgroup of G, then there exists g ∈ G such that Q 6 gP g−1 ; i.e. Q is contained in some conjugate of P. In particular, any two Sylow p- subgroups of G are conjugate in G. 3. np ≡...
Let G be finite with |G| > 1. If Aut(G) acts transitively on G − {e} then G ∼= (Z/(p))n for some prime p.
Let G be finite with |G| > 1. If Aut(G) acts transitively on G − {e} then G ∼= (Z/(p))n for some prime p.
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
let E be a finite extension of a field F of prime characteristic p, and let...
let E be a finite extension of a field F of prime characteristic p, and let K = F(Ep) be the subfield of E obtained from F by adjoining the pth powers of all elements of E. Show that F(Ep) consists of all finite linear combinations of elements in Ep with coefficients in F.
Let a be an element of a finite group G. The order of a is the...
Let a be an element of a finite group G. The order of a is the least power k such that ak = e. Find the orders of following elements in S5 a. (1 2 3 ) b. (1 3 2 4) c. (2 3) (1 4) d. (1 2) (3 5 4)
Theorem 2.1. Cauchy’s Theorem: Abelian Case: Let G be a finite abelian group and p be...
Theorem 2.1. Cauchy’s Theorem: Abelian Case: Let G be a finite abelian group and p be a prime such that p divides the order of G then G has an element of order p. Problem 2.1. Prove this theorem.
Let (G,·) be a finite group, and let S be a set with the same cardinality...
Let (G,·) be a finite group, and let S be a set with the same cardinality as G. Then there is a bijection μ:S→G . We can give a group structure to S by defining a binary operation *on S, as follows. For x,y∈ S, define x*y=z where z∈S such that μ(z) = g_{1}·g_{2}, where μ(x)=g_{1} and μ(y)=g_{2}. First prove that (S,*) is a group. Then, what can you say about the bijection μ?
Let P be a finite p-group. Show that Φ(P) is the unique normal subgroup of P...
Let P be a finite p-group. Show that Φ(P) is the unique normal subgroup of P minimal such that the corresponding factor group is elementry abelian
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT