Question

In: Physics

4. Each π+ particle in a beam has a momentum of 800 MeV/c. How far will...

4. Each π+ particle in a beam has a momentum of 800 MeV/c. How far will the beam travel before approximately 10% of the π+ are left? The π+ rest energy and half-life (at rest) are 140 MeV and 18 nsec, respectively.

Solutions

Expert Solution


Related Solutions

Each α particle in a beam of α particles has a kinetic energy of 7.0 MeV....
Each α particle in a beam of α particles has a kinetic energy of 7.0 MeV. Through what potential difference would you have to accelerate these α particles in order that they would have enough energy so that if one is fired head-on at a gold nucleus it could reach a point 1.1  10-14 m from the center of the nucleus?
A particle of rest energy 800 MeV decays in its rest frame into two identical particles...
A particle of rest energy 800 MeV decays in its rest frame into two identical particles of rest energy 250 MeV. What are the kinetic energies (in MeV), momenta (in MeV/c), and velocities (in units of c) of the daughter particles? Refer to the previous problem. The parent particle moves in the lab with kinetic energy 800 MeV, and one daughter particle is emitted along the parent’s direction of motion. Find the lab kinetic energy (in MeV) for the daughter...
7. A particle of rest energy 800 MeV decays in its rest frame into two identical...
7. A particle of rest energy 800 MeV decays in its rest frame into two identical particles of rest energy 250 MeV. What are the kinetic energies (in MeV), momenta (in MeV/c), and velocities (in units of c) of the daughter particles?
Particle X has a speed of 0.850 c and a momentum of 8.61×10-19kgm/s. What is the...
Particle X has a speed of 0.850 c and a momentum of 8.61×10-19kgm/s. What is the mass of the particle? What is the rest energy of the particle? What is the kinetic energy of the particle? What is the total energy of the particle?
A beam of protons, each with energy E=20 MeV, is incident on a potential step 40...
A beam of protons, each with energy E=20 MeV, is incident on a potential step 40 MeV high. Graph using a computer the relative probability of finding protons at values of x > 0 from x = 0 to x = 5 fm.
Particle A of charge 3.15  10-4 C is at the origin, particle B of charge -5.94  10-4 C...
Particle A of charge 3.15  10-4 C is at the origin, particle B of charge -5.94  10-4 C is at (4.00 m, 0), and particle C of charge 1.05  10-4 C is at (0, 3.00 m). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C?   N (b) What is the y component of the force exerted by A on C?   N (c) Find the magnitude of the...
Particle A of charge 2.97  10-4 C is at the origin, particle B of charge -6.54  10-4 C...
Particle A of charge 2.97  10-4 C is at the origin, particle B of charge -6.54  10-4 C is at (4.00 m, 0), and particle C of charge 1.11  10-4 C is at (0, 3.00 m). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? (b) What is the y component of the force exerted by A on C? (c) Find the magnitude of the force exerted...
Particle A of charge 3.15  10-4 C is at the origin, particle B of charge -5.94  10-4 C...
Particle A of charge 3.15  10-4 C is at the origin, particle B of charge -5.94  10-4 C is at (4.00 m, 0), and particle C of charge 1.05  10-4 C is at (0, 3.00 m). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? N (b) What is the y component of the force exerted by A on C? N (c) Find the magnitude of the...
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge...
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge −6.20 ✕ 10−4 C is at (3.98 m, 0) and particle C of charge 1.25 ✕ 10−4 C is at (0, 3.38 m). (a) What is the x-component of the electric force exerted by A on C? N (b) What is the y-component of the force exerted by A on C? N (c) Find the magnitude of the force exerted by B on C....
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge...
Particle A of charge 3.25 ✕ 10−4 C is at the origin, particle B of charge −6.20 ✕ 10−4 C is at (3.98 m, 0) and particle C of charge 1.25 ✕ 10−4 C is at (0, 3.38 m). (e) Calculate the y-component of the force exerted by B on C. N (f) Sum the two x-components to obtain the resultant x-component of the electric force acting on C. N (g) Repeat part (f) for the y-component. N (h) Find...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT