Question

In: Physics

A thin, circular disk of radius R = 30 cm is oriented in the yz-plane with...

A thin, circular disk of radius R = 30 cm is oriented in the yz-plane with its center as the origin. The disk carries a total charge Q = +3 μC distributed uniformly over its surface. Calculate the magnitude of the electric field due to the disk at the point x = 15 cm along the x-axis.

Solutions

Expert Solution


Related Solutions

A very thin circular disk of radius R = 17.00 cm has charge Q = 50.00...
A very thin circular disk of radius R = 17.00 cm has charge Q = 50.00 mC uniformly distributed on its surface. The disk rotates at a constant angular velocity ? = 5.00 rad/s around the z-axis through its center. Calculate the magnitude of the magnetic field strength on the z axis at a distance d = 1.700 × 10^3 cm from the center. Note that d >> R.
A submerged circular disk with a radius of 8 meters is oriented vertically such that the...
A submerged circular disk with a radius of 8 meters is oriented vertically such that the top is 4 meter beneath the surface of the water. Find the hydrostatic force on one side of the disk.
Find the moment of inertia of a circular disk of radius R and mass M that...
Find the moment of inertia of a circular disk of radius R and mass M that rotates on an axis passing through its center. [Answer: ½ MR2] Step 1: Pictorial representation: Sketch a neat picture to represent the situation. Step 2: Physical representation: 1) Cut the disk into many small rings as it has the circular symmetry. 2) Set up your coordinate system and choose its origin at the pivot point (or the axle location) for convenience. Then choose a...
a thin circular-disk earning,5.00 cm in diameter is plated with a coating of gold 0.20 mm...
a thin circular-disk earning,5.00 cm in diameter is plated with a coating of gold 0.20 mm thick from an Au+3 bath. a) how many days does it take to deposit the gold on one side of this earring if the current is 0.010 Ampere (d of Au = 19.3 g/cm3) b) how many days does it take to deposit the gold on both sides of a pair of these earrings c) if the price of Au is $320 per troy...
Consider a charged disk of radius R on the x-z plane with its centre at the...
Consider a charged disk of radius R on the x-z plane with its centre at the origin. The disk has a positive charge density σ. (a) Find, from first principles, an expression for the electric field of this disk at point P (0,yP,0) on the axis of the disk. (b) A second identical charged disk is now placed at a distance d parallel to the first, with its center at (0,d,0). Find the net electric field due to both disks...
A thin uniform disk of radius r and mass m is spinning about its center at...
A thin uniform disk of radius r and mass m is spinning about its center at angular speed ω0. The disk is placed flat on a horizontal surface. The coefficient of kinetic friction between the disk and the surface is μ and constant for the entire area of contact. a) Find the frictional torque on the disk. (Hint: Divide the disk into many concentric rings.) b) How long will it take the disk to come to rest?
Consider a thin uniform disk of mass M and radius R. A mass m is located...
Consider a thin uniform disk of mass M and radius R. A mass m is located along the axis of the disk at a distance z from the center of the disk. The gravitational force on the mass m (in terms of m, M, R, G, and z) is
i) A circular coil with radius 20 cm is placed with it’s plane parallel and between...
i) A circular coil with radius 20 cm is placed with it’s plane parallel and between two straight wires P and Q. The coil carries current Icoil = 0.5A . Icoil is in clockwise direction when viewed from left side. Wire P is located 40 cm to the left of a circular coil and carries current Ip = 0.2A while wire Q is located 80 cm to the right of the circular coil and carries current IQ = 0.6A. Both...
Consider, in the xy-plane, the upper half disk of radius R, with temperature u governed by...
Consider, in the xy-plane, the upper half disk of radius R, with temperature u governed by Laplace's equation, and with zero-Dirichlet B.C. on the (bottom) flat part of the disk, and Neumann B.C. ur=f(theta), on its (top) curved boundary. (a)Use the Method of Separation of Variables to completely derive the solution of the BVP. Show all details of the procedure, and of your work. Do not start with with the eigenfunctions, the are to be derived. The final solution must...
1. A uniform disk of mass M = 5.00 kg and radius r = 24.0 cm...
1. A uniform disk of mass M = 5.00 kg and radius r = 24.0 cm is mounted on a motor through its center. The motor accelerates the disk uniformly from rest by exerting a constant torque of 1.50 N · m. (a) What is the time required for the disk to reach an angular speed of 8.50 ✕ 102 rpm? (b) What is the number of revolutions through which the disk spins before reaching this angular speed? 2. A...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT