Question

In: Advanced Math

Consider a rocket that burns steadily. The higher pressure in the combustion chamber, the faster the...

Consider a rocket that burns steadily. The higher pressure in the combustion chamber, the faster the propellant burns. Why is this? The relationship is such that the higher the pressure, the closer the gaseous flame is to the surface and the more effectively it can transfer heat back to the surface thereby gasifying the propellant quicker. The rate of gas generation, ?_? , can be described by the equation: ?_?=?_1 ?^?, where P is the pressure, and C1 and n are the constants for a given propellant with given exposed surface area.


The hot gas leaving the rocket must pass through the throat of the exhaust nozzle at sonic velocity.

▪The higher the pressure, the greater the density of this gas and the greater the rate of mass flow at sonic velocity. (The speed of sound in a gas is independent of pressure.) Accordingly, the rate of gas escape, ??r_e , is described by the equation: ??=?2?r_e=C_2 P where C2 is a constant, dependent on cross section area of the nozzle throat and on the velocity of sound in the combustion products.

▪What is the steady operating pressure of a solid-propellant rocket for the given values of the constants C1 , C2, and n? What values of n keep it stable?

PLEASE WRITE CLEARLY AND EXPLAIN WHY IS THE ANSWER THE WAY IT IS PLEASE THANK YOU

Solutions

Expert Solution


Related Solutions

A rocket motor burns LH2 and LOX. The combustion chamber pressure and temperature are 25 atmospheres...
A rocket motor burns LH2 and LOX. The combustion chamber pressure and temperature are 25 atmospheres and 3517 K, respectively. The area of the nozzle throat is 0.1 m^2. The nozzle exit area is designed so that the exit pressure equals the ambient pressure at 30 km altitude. For the combustion gases, assume gamma is 1.22 and the molecular weight is 16. At an altitude of 30 km, where the local atmospheric pressure is 1186 Pa, calculate (a) the specific...
A vehicle burns 150 mole/h of gasoline (C8H18) with 12% excess air in a combustion chamber...
A vehicle burns 150 mole/h of gasoline (C8H18) with 12% excess air in a combustion chamber with 90% fuel conversion. a) What is the molar flow of incoming air to the combustion chamber? (mol/h) b) What are the mass flows of the combustion products at the chamber’s exit? (g/h)
explain why constant volume combustion gives a higher indicated fuel conversion efficiency than constant pressure combustion...
explain why constant volume combustion gives a higher indicated fuel conversion efficiency than constant pressure combustion for the same compression ratio.
Consider a diffuser in which air flows steadily. At the inlet of the diffuser the pressure,...
Consider a diffuser in which air flows steadily. At the inlet of the diffuser the pressure, the temperature and the velocity of the air are 100 kPa, 110oC and 175 m/s, respectively. At the exit of the diffuser the pressure, the velocity of the gas and the area of the diffuser are 110 kPa, 15 m/s and 0.1 m2 , respectively. Accounting for an heat loss of 3 kJ/kg from the diffuser to the surroundings at 100 kPa and 25oC...
4.15 A small 7.40-kg rocket burns fuel that exerts a time-varying upward force on the rocket....
4.15 A small 7.40-kg rocket burns fuel that exerts a time-varying upward force on the rocket. This force obeys the equation F=A+Bt2. Measurements show that at t=0, the force is 104.0N , and at the end of the first 1.50s , it is 193.0N . Find the constant A Find the constants B Find the net force on this rocket the instant after the fuel ignites. Find the acceleration of this rocket the instant after the fuel ignites. Find the...
In a thermally isolated mixing chamber cold water at 50oC and 1MPa is heated steadily by...
In a thermally isolated mixing chamber cold water at 50oC and 1MPa is heated steadily by a steam at 200oC and 1MPa. The mixture leaves the chamber at 150oC. 1.mass ratio of the hot and cold streams 2 entropy generation rate per unit cold water mass flow rate
a) An open cycle gas turbine engine consists of a compressor, a combustion chamber and a...
a) An open cycle gas turbine engine consists of a compressor, a combustion chamber and a two-stage turbine with a re-heater. The gas enters the compressor at a temperature of 15 C. The pressure ratio of the compressor, which is 90% efficient, is 12. The combustion gas enters the first stage turbine at 1100 C. Both stages of the turbine are 95% efficient. The first stage has a pressure ratio of 4, whereas that of the second stage is 3....
Question 3 A sheathed thermocouple is placed in a combustion chamber to measure the temperature of...
Question 3 A sheathed thermocouple is placed in a combustion chamber to measure the temperature of the gases at a certain point in the process. The thermocouple reading is 1110K and the inside wall temperature was measured at 1008K. The thermocouple has a surface area of 10 mm2 . (a) A pitot probe is used to measure the velocity of the gas stream in the vicinity of the thermocouple tip. It measures a difference in static and dynamic pressure of...
1. Glucose will react with oxygen in a laboratory setting using a combustion chamber. The reaction...
1. Glucose will react with oxygen in a laboratory setting using a combustion chamber. The reaction is exergonic, with the release of a large amount of energy in the form of heat and the production of carbon dioxide and water according to the following chemical equation: C6H12O6 + 6O2 → 6CO2 + 6H2O       G = –686 kcal/mol Glucose can also be incubated with cells that completely oxidize glucose, according to the same net chemical equation and with the same...
A spherical thermocouple junction 1.0 mm in diameter is inserted in a combustion chamber to measure...
A spherical thermocouple junction 1.0 mm in diameter is inserted in a combustion chamber to measure the temperature ?T? of the products of combustion. The hot gases have a velocity of V= 5 m/s. (a) If the thermocouple is at room temperature, Ti,when it is inserted in the chamber, estimate the time required for the temperature difference, ?T?-T, to reach 2% of the initial temperature difference, ?T?-Ti. Neglect radiation and conduction through the leads. Properties of the thermocouple junction are...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT