Question

In: Mechanical Engineering

A vehicle burns 150 mole/h of gasoline (C8H18) with 12% excess air in a combustion chamber...

A vehicle burns 150 mole/h of gasoline (C8H18) with 12% excess air in a combustion chamber with 90% fuel conversion.

a) What is the molar flow of incoming air to the combustion chamber? (mol/h)

b) What are the mass flows of the combustion products at the chamber’s exit? (g/h)

Solutions

Expert Solution


Related Solutions

Octane, C8H18, a primary constituent of gasoline, burns in air: C8H18(ℓ) + 12 1/2 O2(g) →...
Octane, C8H18, a primary constituent of gasoline, burns in air: C8H18(ℓ) + 12 1/2 O2(g) → 8 CO2(g) + 9 H2O(ℓ) A 1.00-g sample of octane is burned in a constant volume calorimeter. The calorimeter is in an insulated container with 1.20 kg of water. The temperature of the water and the bomb rises from 25.00 °C (298.15 K) to 33.21 °C (306.36 K). The heat required to raise the bomb’s temperature (its heat capacity), Cbomb, is 837 J/K. The...
A heater burns normal octane (n-C8H18) using 20.0 percent excess air. Combustion is complete. The flue...
A heater burns normal octane (n-C8H18) using 20.0 percent excess air. Combustion is complete. The flue gas leaves the stack at a pressure of 100 kPa and a temperature of 1600C. a) Calculate the complete flue gas analysis. b) What is the volume of the flue gas in cubic meter per kg mol of n-octane?
INTERACTIVE EXAMPLE Constant Volume Calorimetry Octane, C8H18, a primary constituent of gasoline, burns in air: C8H18(ℓ)...
INTERACTIVE EXAMPLE Constant Volume Calorimetry Octane, C8H18, a primary constituent of gasoline, burns in air: C8H18(ℓ) + 12 1/2 O2(g) → 8 CO2(g) + 9 H2O(ℓ) A 1.00-g sample of octane is burned in a constant volume calorimeter. The calorimeter is in an insulated container with 1.20 kg of water. The temperature of the water and the bomb rises from 25.00 °C (298.15 K) to 33.21 °C (306.36 K). The heat required to raise the bomb’s temperature (its heat capacity),...
A heater burns n-butanol with 60% excess air. Combustion is complete, the fuel is exhausted and...
A heater burns n-butanol with 60% excess air. Combustion is complete, the fuel is exhausted and the stack gas leaves at a temperature of 260 °C and a pressure of 100 kPa. What would be the results of an Orsat analysis of the flue gas? (Calculate both dry and wet basis.) How many liters of flue gas are produced per mole of n-butanol burnt?
The combustion of octane C8H18 (a component in gasoline) in the presence of oxygen proceeds according...
The combustion of octane C8H18 (a component in gasoline) in the presence of oxygen proceeds according to the following balanced equation: 2 C8H18 (l) + 25 O2 (g) ----> 16CO2   (g) + 18H2O (l)           0.0500 L of octane (density 0.702 g/mL) was allowed to burn in the presence of 155 g of oxygen gas. The actual yield of water produced in this reaction was 38.4 grams. a. Determine the theoretical yield for the water. b. Determine the percent yield. c....
Consider a rocket that burns steadily. The higher pressure in the combustion chamber, the faster the...
Consider a rocket that burns steadily. The higher pressure in the combustion chamber, the faster the propellant burns. Why is this? The relationship is such that the higher the pressure, the closer the gaseous flame is to the surface and the more effectively it can transfer heat back to the surface thereby gasifying the propellant quicker. The rate of gas generation, ?_? , can be described by the equation: ?_?=?_1 ?^?, where P is the pressure, and C1 and n...
A liquid octane (C8H18) enters a combustion chamber of a gas turbine stationary at 1 atm...
A liquid octane (C8H18) enters a combustion chamber of a gas turbine stationary at 1 atm and 25 °C, and burns with 300% of excess air that enters the chamber in the same state. Determine the heat of combustion if the products come out at 226.85 °C (kJ/kg) Determine adiabatic flame temperature (°C)
A small gas turbine uses C8H18(l) for fuel and it enters the combustion chamber at 25◦C...
A small gas turbine uses C8H18(l) for fuel and it enters the combustion chamber at 25◦C whereas air coming from the high pressure stage is at 287◦C . The products of combustion leave the combustion chamber at 1167◦C . The fuel is injected at a rate of 0.95 kg/min where it is mixed and burned with 400 % excess air. An analysis of combustions reveals that all the hydrogen in the fuel burns to H2O but only 90% of the...
For a particular isomer of C8H18, the combustion reaction produces 5104.1 kJ of heat per mole...
For a particular isomer of C8H18, the combustion reaction produces 5104.1 kJ of heat per mole of C8H18(g) consumed, under standard conditions. C8H18(g)+252O2(g)⟶8CO2(g)+9H2O(g)Δ?∘rxn=−5104.1 kJ/mol What is the standard enthalpy of formation of this isomer of C8H18(g)?
A rocket motor burns LH2 and LOX. The combustion chamber pressure and temperature are 25 atmospheres...
A rocket motor burns LH2 and LOX. The combustion chamber pressure and temperature are 25 atmospheres and 3517 K, respectively. The area of the nozzle throat is 0.1 m^2. The nozzle exit area is designed so that the exit pressure equals the ambient pressure at 30 km altitude. For the combustion gases, assume gamma is 1.22 and the molecular weight is 16. At an altitude of 30 km, where the local atmospheric pressure is 1186 Pa, calculate (a) the specific...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT