In: Physics
The LIGO experiment, which historically detected gravitational waves for the first time in September 2015, uses a pair of highly sensitive Michelson interferometers. These have arms that are 4.00 km long and use powerful Nd:Yag lasers with 1064 nm wavelength. The beams traverse the arms both ways 280 times before recombining, which effectively lengthens the arm length to 1120 km. The devices are tuned so that the beams destructively interfere when they recombine if no gravitational wave is present. (a) The beam has a power of 100 kW, concentrated into an area of a square centimeter. Calculate the amplitude of the electric field in the beam. (b) LIGO can detect a gravitational wave that temporarily lengthens one arm by the minuscule amount of 10-18 m! When this happens, the beams combine with a phase difference of π+δ. Estimate the shift δ in radians. Note that the phase difference accumulates during both traversals of each round trip. (c) Use Eq. (35.7)to estimate the sensitivity of the photodetector in terms of the minimal electric field strength needed to detect a gravitational wave.
Eqn 35.7
Ep = 2E |cos (theta/2) |
explanation pleasssssee.
Thanks in advance!
(c)
Put the value of and Eo in equation 35.7 as given in the question and find the value of the minimum electric field strength needed to detect gravitational wave.
Here,
So,
Therefore,