In: Statistics and Probability
Suppose that we are to conduct the following hypothesis test:
H0:μ=1010
H1:μ>1010
Suppose that you also know that σ=250, n=95, x¯=1067.5, and take α=0.01. Draw the sampling distribution, and use it to determine each of the following:
A. The value of the standardized test statistic:
Note: For the next part, your answer should use interval notation. An answer of the form (−∞,a) is expressed (-infty, a), an answer of the form (b,∞) is expressed (b, infty), and an answer of the form (−∞,a)∪(b,∞) is expressed (-infty, a)U(b, infty).
B. The rejection region for the standardized test statistic:
C. The p-value is
D. Your decision for the hypothesis test:
A. Do Not Reject H1.
B. Reject H1.
C. Reject H0.
D. Do Not Reject H0.
a)
population std dev ,    σ =   
250.0000          
       
Sample Size ,   n =    95  
           
   
Sample Mean,    x̅ =   1067.5000  
           
   
          
           
   
'   '   '      
           
          
           
   
Standard Error , SE = σ/√n =   250.0000   / √
   95   =   25.6495  
   
Z-test statistic= (x̅ - µ )/SE = (   1067.500  
-   1010   ) /    25.6495  
=   2.242
b)
critical z value, z* =      
2.3263
rejection region: (2.3263, inf)
c)
p-Value   =   0.0125   [ Excel
formula =NORMSDIST(-z) ]
d)
D. Do Not Reject H0.