Question

In: Statistics and Probability

In a random sample of 26 ​people, the mean commute time to work was 33.8 minutes...

In a random sample of 26 ​people, the mean commute time to work was 33.8 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 95​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. The confidence interval for the population mean mu is left parenthesis nothing comma nothing right parenthesis . (Round to one decimal place as​ needed.)

Solutions

Expert Solution

Solution:

Given:

Sample size = n = 26

Sample mean = minutes

Sample standard deviation = s = 7.2 minutes.

Confidence level = c = 95%

Formula:

where

tc is t critical value for c = 95%  confidence level

Thus two tail area = 1 - c = 1 - 0.95 = 0.05

df = n - 1 =  26 - 1 = 25

Look in  t table for df = 25 and two tail area = 0.05 and find t critical value

tc = 2.060

Thus

Thus margin of error =

Confidence interval:

Interpretation:

We are 95% confident that the true value of population mean commute time to work is between 30.9 minutes and 36.7 minutes.


Related Solutions

In a random sample of 26 ​people, the mean commute time to work was 30.7 minutes...
In a random sample of 26 ​people, the mean commute time to work was 30.7 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. The confidence interval for the population mean mu is(-,-) ​(Round to one decimal place) The margin of error of mu is___. ​(Round to one decimal...
In a random sample of 29 people, the mean commute time to work was 32.5 minutes...
In a random sample of 29 people, the mean commute time to work was 32.5 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a ​   t-distribution to construct a 95​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results. Round to one decimal place as needed.
In a random sample of 17 ​people, the mean commute time to work was 30.1 minutes...
In a random sample of 17 ​people, the mean commute time to work was 30.1 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results.
In a random sample of 18 ​people, the mean commute time to work was 34.7 minutes...
In a random sample of 18 ​people, the mean commute time to work was 34.7 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 80% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 21 people, the mean commute time to work was 34.1 minutes...
In a random sample of 21 people, the mean commute time to work was 34.1 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 99​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results. The confidence interval for the population mean μ is __,__ ​(Round to one decimal place as​ needed.) The margin of error of μ is __,__...
In a random sample of 22 ​people, the mean commute time to work was 34.5 minutes...
In a random sample of 22 ​people, the mean commute time to work was 34.5 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 90​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results
In a random sample of 22 ​people, the mean commute time to work was 34.5 minutes...
In a random sample of 22 ​people, the mean commute time to work was 34.5 minutes and the standard deviation was 7.2 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 90​% confidence interval for the population mean mu. What is the margin of error of mu​? Interpret the results
In a random sample of 23 ​people, the mean commute time to work was 31.2 minutes...
In a random sample of 23 ​people, the mean commute time to work was 31.2 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean μ. What is the margin of error of μ​? Interpret the results.
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes...
In a random sample of 8 ​people, the mean commute time to work was 35.5 minutes and the standard deviation was 7.4 minutes. A 90​% confidence interval using the​ t-distribution was calculated to be (30.5,40.5). After researching commute times to​ work, it was found that the population standard deviation is 9.2 minutes. Find the margin of error and construct a 90​% confidence interval using the standard normal distribution with the appropriate calculations for a standard deviation that is known. Compare...
In a random sample of 28 ​people, the mean commute time to work was 34.4 minutes...
In a random sample of 28 ​people, the mean commute time to work was 34.4 minutes and the standard deviation was 7.3 minutes. Assume the population is normally distributed and use a​ t-distribution to construct a 98​% confidence interval for the population mean mu. What is the margin of error of mu​? The confidence interval for the population mean mu is (__, __)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT